NWU Institutional Repository

Modelling of electricity cost risks and opportunities in the gold mining industry

dc.contributor.advisorPelzer, R.
dc.contributor.authorVan der Zee, Lodewyk Francois
dc.date.accessioned2014-11-10T09:17:50Z
dc.date.available2014-11-10T09:17:50Z
dc.date.issued2014
dc.descriptionPhD (Electrical Engineering), North-West University, Potchefstroom Campus, 2014en_US
dc.description.abstractCarbon tax, increased reactive power charges, tariff increases and the Energy Conservation Scheme (ECS) are some of the worrying electricity cost risks faced by large South African industries. Some of these proposed cost risks are not enforced as yet, but once approved could threaten company financial viability and thousands of jobs. Managing multiple cost risks associated with electricity consumption at several mines can be laborious and complex. This is largely due to circumstantial rules related to each potential electricity cost risk and unique mine characteristic. To limit the electricity cost risks for a mining company, clear strategies and focus areas need to be identified. No literature was found that provides a simplified integrated electricity cost risk and mitigation strategy for the South African gold mining industry. Previous studies only focused on a single mine or mining subsystem. Literature pertaining to potential risks is available, however the exact impact and mitigation on the gold mining industry has yet to be determined. The aim of this study is to accurately predict the impact of electricity cost risks and identify strategies that could alleviate their cost implications. Electricity consumption and installed capacities were used to benchmark mines and categorise them according to investigated risks. The benchmarked results provided an accurate starting point to identify best practices and develop electricity cost saving strategies. This study will highlight the additional benefits that can be obtained by managing electricity usage for a group of mines or mining company. Newly developed models are used to quantify savings on pumping, compressed air and cooling systems. To manage and report on the potential risks and mitigation, an ISO 50001 based energy management system was developed and implemented. The applied and developed models can also be adjusted to review and manage the potential cost risks on other types of mines. Derived risk and mitigation models were further used to quantify the impact on one of the largest gold mining companies in South Africa. These models indicate a potential annual price increase of 12%, while mitigation strategies could reduce the electricity consumption by more than 7%. Mitigation savings resulted from proposed projects as well as behavioural change-induced savings due to improved management. Over a five-year period the projects identified could result in electricity costs savings of between R675-million and R819-million.en_US
dc.description.thesistypeDoctoralen_US
dc.identifier.urihttp://hdl.handle.net/10394/12267
dc.language.isoenen_US
dc.subjectElectricity cost risken_US
dc.subjectModellingen_US
dc.subjectElectricity cost savingsen_US
dc.subjectISO managementen_US
dc.subjectDSM strategiesen_US
dc.subjectElectricity reporting and management systemen_US
dc.titleModelling of electricity cost risks and opportunities in the gold mining industryen
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 5 of 7
Loading...
Thumbnail Image
Name:
Van_der_Zee_LF_TOC.pdf
Size:
371.08 KB
Format:
Adobe Portable Document Format
Description:
Table of contents
Loading...
Thumbnail Image
Name:
Van_der_Zee_LF_Chapter_1.pdf
Size:
326.52 KB
Format:
Adobe Portable Document Format
Description:
Chapter 1
Loading...
Thumbnail Image
Name:
Van_der_Zee_LF_Chapter_2.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
Chapter 2
Loading...
Thumbnail Image
Name:
Van_der_Zee_LF_Chapter_3.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format
Description:
Chapter 3
Loading...
Thumbnail Image
Name:
Van_der_Zee_LF_Chapter_4.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Chapter 4

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections