• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a new pole–slip protection function for synchronous machines

    Thumbnail
    View/Open
    Table of contents (171.8Kb)
    Chapter 1 (238.6Kb)
    Chapter 2 (1.356Mb)
    Chapter 3 (824.3Kb)
    Chapter 4 (810.3Kb)
    Chapter 5 (2.324Mb)
    Chapter 6 (712.7Kb)
    Chapter 7 (150.2Kb)
    Bibliography & Appendix (8.459Mb)
    Date
    2011
    Author
    Lamont, Lafras
    Metadata
    Show full item record
    Abstract
    The rotor shaft of a synchronous machine can experience severe mechanical stress due to torque pulsations during a pole-slip condition. All pole-slip protection relays currently on the market use the impedance pole-slip protection method to detect a pole-slip. No commercial relay currently available can predict accurately when a generator is about to experience a damaging pole-slip. All the relays will only trip a generator after it has pole-slipped one or more times. Severe mechanical damage could be caused to a machine after only one pole-slip. It is therefore essential to enhance pole-slip protection relays to such an extent that it can trip a generator before it pole slips. The proposed pole-slip protection function must predict when a generator will become unstable during a network fault. As soon as instability is predicted, the generator must be tripped before the fault is cleared to avoid damaging post-fault torque effects. Conventional impedance pole-slip protection methods are are also discussed and the shortcomings of impedance pole-slip protection are investigated. The new pole-slip protection function was designed by using PSCAD. Detailed PSCAD simulations on different network configurations proved that the new pole-slip protection function will trip a generator before a damaging pole-slip occurs. The new pole-slip protection function was also implemented on an ABB REM543 multifunctional protection relay and tested on a RTDS. The concept of the new pole-slip function was successfully demonstrated on the protection relay. The operation of conventional impedance scheme relays was compared with the proposed pole-slip function for different fault conditions. Although the new pole-slip protection function is more complex than the existing impedance functions, it was concluded that similar skills are required to test and commission the new protection function. The new pole-slip function outperforms the impedance protection methods, since the new protection function can trip the generator before it pole-slips.
    URI
    http://hdl.handle.net/10394/9730
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV