• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry

    Thumbnail
    View/Open
    Table of contents (730.5Kb)
    Chapter 1 (2.370Mb)
    Chapter 2 (198.5Kb)
    Chapter 3 (1.806Mb)
    Chapter 4 (2.833Mb)
    Chapter 5 (51.47Kb)
    Bibliography & Appendix (577.5Kb)
    Date
    2012
    Author
    Venter, Johan
    Metadata
    Show full item record
    Abstract
    Various commercial software packages are available for simulating compressed air network operations. However, none of these software packages are able to dynamically prioritise compressor selection on large compressed air networks in the mining industry. In this dissertation, a dynamic compressor selector (DCS) will be developed that will actively and continuously monitor system demand. The software will ensure that the most suitable compressors, based on efficiency and position in the compressed air network, are always in operation. The study will be conducted at a platinum mine. Compressed air flow and pressure requirements will be maintained without compromising mine safety procedures. Significant energy savings will be realised. DCS will receive shaft pressure profiles from each of the shafts’ surface compressed air control valves. These parameters will be used to calculate and predict the compressed air demand. All pipe friction losses and leaks will be taken into account to determine the end-point pressure losses at different flow rates. DCS will then prioritise the compressors of the compressed air network based on the overall system requirement. This software combines the benefits of supply-side and demand-side management. Potential energy savings with DCS were proven and compressor cycling reduced. A DCS user-friendly interface was created to easily set up any mine’s compressed air network.
    URI
    http://hdl.handle.net/10394/9540
    Collections
    • Engineering [1379]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV