• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved energy graph-based visualisation fault detection and isolation — A spectral theorem approach

    Thumbnail
    View/Open
    Wolmarans W. et al.2023.pdf (2.577Mb)
    Date
    2023
    Author
    Wolmarans, Wikus
    Van Schoor, George
    Uren, Kenneth R.
    Metadata
    Show full item record
    Abstract
    This paper illustrates how the energy graph-based visualisation (EGBV) fault detection and isolation (FDI) method may be interpreted in terms of the spectral theorem to gain insight into the sensitivity and robustness performance of the method. It is shown that the EGBV monitoring structure can be decomposed into components of varying importance. A formula is proposed as a guideline for informed component removal. These principles are applied to a practical heated two-tank process. It is shown that lesser-weighted components exhibit noisy behaviour and, when removed, increase the robustness of EGBV. Additionally, the computational requirements for the EGBV method and its fault signatures are reduced. It is also shown that retaining smaller components provides the benefit of improved sensitivity. Therefore, a trade-off exists between sensitive and robust process monitoring. Furthermore, it is acknowledged that component removal may compromise the resolution of EGBV’s fault signatures and so, a formula is derived to verify its resolution integrity.
    URI
    https://doi.org/10.1016/j.compchemeng.2023.108326
    http://hdl.handle.net/10394/42557
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV