Show simple item record

dc.contributor.advisorDennis, S.R.
dc.contributor.advisorVan Heerden, E.
dc.contributor.authorMcIntyre, Maaike Josette
dc.date.accessioned2014-05-13T10:30:22Z
dc.date.available2014-05-13T10:30:22Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10394/10508
dc.descriptionMSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2013en_US
dc.description.abstractChromium is used in many processing applications, which has led to the formation of chromium (VI) waste. Cr(VI) is an unstable, mobile carcinogen, which is interchangeable with Cr(III) under certain environmental conditions. Management of this waste, however, is often not considered. Mine under investigation is an example of such historic mismanagement. During the second World War, Cr(VI) waste was transferred to the study site from areas where leather products were made for the war effort. This waste was not managed appropriately in the past and with time Cr(VI) leached into the groundwater and possibly surface water resources. As these water resources are used for domestic and agricultural water supply, this may have serious effects on the human and environmental health in the area. Some of the major Cr(VI) effects on human and animal health include malignant tumours, skin irritation, respiratory and reproductive system damage. Lung cancer is of concern when Cr(VI) is inhaled and stomach tumours occur when this chemical pollutant is ingested. The effects of Cr(VI) on plants include the disruption of shoot and root elongation, and if it accumulates enough within the plant can cause ingested health problems for humans and animals. Water quality guidelines state that the Target Water Quality Range for Cr(VI) in drinking water should not exceed 0.05 mg/L. Prolonged exposure of values higher than this target value has adverse health effects and may result in cancer. The study site has a scarcity in water sources and therefore requires good quality water resources. This study aims to identify and use biomarkers to assist in the hydrological characterization of the mine. Available mitigation options can be implemented once it is known how the water in the area moves and distributes Cr(VI) pollution. A biomarker is an indicator of a biological state, which in turn can be used to assist in characterizing the chemical conditions of the sub-surface. Bacteria can aid as environmental biomarkers as they are sensitive and specific to the environmental conditions in which they flourish. In this way they give a good indication of the environmental condition and any possible pollution. Due to the fact that ground- and surface water are integrated resources, it is likely that if one is impacted by pollution, it will indirectly impact the other one. Therefore, the biomarkers identified can be used to characterize water pollutants that are present in ground- and some surface water resources. A description of the study site is provided, wherein the climate, elevation, geology, land use, geohydrology, hydrochemistry and surface water are documented. These factors help to identify and clarify the sources and pathways that water and the pollution would follow. Ten water samples, from surface and groundwater, were obtained in two separate sampling opportunities. The first analysis of the water samples included the determination of the chemical constituents. Two of these constituents analyzed were the total Cr and individual Cr(VI) levels. Six water samples had excessively high Cr values (exceeding the Water Quality Target Range of drinking water and water agricultural use). These values ranged from 0.1 – 3.9 mg/L. The 6 samples with excessive Cr(VI) values were used for the microbial analyses. The microbial analyses consisted of DAPI (4’,6-diamidino-2-phenylindole ) staining, for cell enumeration, and molecular analyses. The molecular analyses included polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and sequencing applications concluded in the laboratory. Fifteen bands, representing different organisms, were removed from the DGGE polyacrylamide gel and processed for sequencing. The organisms that were present in the sample were uncultured Cyanobacterium, Sediminibacterium salmoneum, uncultured Bacteroidetes bacterium, uncultured betaproteobacterium, uncultured actinobacterium, uncultured Rhodocyclaceae, uncultured Chloroflexi bacterium and uncultured delta-proteobacterium. According to literature most of these organisms may adapt the ability to either reduce Cr(VI) or resist any effect of Cr(VI) in the environment. Two of the bands were highly unidentified organisms, which means that these organisms have not yet been cultured or identified in any sense. The reason for this is that most microorganisms have not yet been documented. This also makes it difficult to identify the exact bacterial strain present within the samples. The deoxyribonucleic acid (DNA) sequences of the different organisms were very different from each other, when compared by a dendrogram. This means that there was a diverse community present within the samples. Electrical conductivity profiles were conducted in the monitoring boreholes to identify possible fracture positions. The total chromium and chromium(VI) levels were documented and compared. Other chemical factors were analysed and those of high value, such as chloride, nitrate and chromium measurements, were used for statistical analyses and comparison with the biomarkers present in the sample. A positive correlation was found between the sample sites and the organisms present within each. It was noted that different communities have different metabolic activities related to susceptibility and will therefore differ under specific environmental conditions. The microorganisms that were present in the 6 water samples all have the ability to either resist or reduce Cr(VI). This means that in Cr(VI) polluted areas they are more likely to flourish than organisms that do not possess this ability. Such susceptible, non-resistant organisms would otherwise occur naturally in a non-polluted environment. From the obtained results it was noted that microorganisms could aid as biomarkers when determining the environmental condition (with respect to Cr(VI) pollution). The bacteria analysed in the samples all indicate a level of chromium pollution, and aided in the determination of pollution sources. These biomarkers can therefore be used to determine the location of other chromium deposits not yet located.en_US
dc.language.isoenen_US
dc.subjectChromium(VI)en_US
dc.subjectGroundwateren_US
dc.subjectSurface wateren_US
dc.subjectTarget Water Quality Rangeen_US
dc.subjectBiomarkersen_US
dc.subjectPollutionen_US
dc.subjectConceptual modelen_US
dc.subjectEnvironmental conditionen_US
dc.subjectMicroorganismsen_US
dc.subjectPCRen_US
dc.subjectDGGEen_US
dc.subjectElectrical conductivityen_US
dc.subjectBioremediationen_US
dc.titleThe identification of biomarkers to assist in the hydrological characterisation of a chromium polluted mineen
dc.typeThesisen_US
dc.description.thesistypeMastersen_US
dc.contributor.researchID13234684 - Dennis, Stefanus Rainier (Supervisor)
dc.contributor.researchID12789585 - Van Heerden, Estariethe (Supervisor)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record