NWU Institutional Repository

Conversation laws for a variable coefficient variant boussinesq system

dc.contributor.authorMuatjetjeja, Ben
dc.contributor.authorKhalique, Chaudry Masood
dc.contributor.researchID16553926 - Muatjetjeja, Ben
dc.contributor.researchID20559860 - Khalique, Chaudry Masood
dc.date.accessioned2016-05-02T13:53:19Z
dc.date.available2016-05-02T13:53:19Z
dc.date.issued2014
dc.description.abstractWe construct the conservation laws for a variable coefficient variant Boussinesq system, which is a third-order system of two partial differential equations. This system does not have a Lagrangian and so we transform it to a system of fourth-order, which admits a Lagrangian. Noether’s approach is then utilized to obtain the conservation laws. Lastly, the conservation laws are presented in terms of the original variables. Infinite numbers of both local and nonlocal conserved quantities are derived for the underlying system.en_US
dc.description.urihttp://www.hindawi.com/journals/aaa/2014/169694/
dc.description.urihttp://dx.doi.org/10.1155/2014/169694
dc.identifier.citationMuatjetjeja, B. & Khalique, C.M. 2014. Conversation laws for a variable coefficient variant boussinesq system. Abstract And Applied Analysis, 2014:1-5. [http://www.hindawi.com/journals/aaa/2014/169694/]en_US
dc.identifier.urihttp://hdl.handle.net/10394/17095
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.titleConversation laws for a variable coefficient variant boussinesq systemen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2014_Muatjetjeja.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description: