NWU Institutional Repository

On a group of the Form 210:(U5(2):2)

dc.contributor.authorBasheer, Ayoub B.M.
dc.contributor.authorMoori, Jamshid
dc.contributor.researchID16434188 - Moori, Jamshid
dc.contributor.researchID26370514 - Basheer, Ayoub Basheer Mohammed
dc.date.accessioned2018-07-27T08:09:26Z
dc.date.available2018-07-27T08:09:26Z
dc.date.issued2017
dc.description.abstractThe full automorphism group U5(2):2 of the special unitary group U5(2) has a 10-dimensional absolutely irreducible module over GF(2): Hence a split extension of the form G = 210:(U5(2):2) does exist. In this paper we first determine the conjugacy classes of G using the coset analysis technique. The structures of the inertia factor groups were determined. These are the groups U5(2):2; 21+6:((31+2:8):2) and O5(2):2. We then determine the Fischer matrices and apply the Clifford-Fischer theory to com-pute the ordinary character table of G: The Fischer matrices Fi of G are all Z-valued, with sizes range between 1 and 5. The full character table of G; which is 109 x 109 C-valued matrix is available in the PhD Thesis [1] of the rst author, which could be accessed online.
dc.identifier.citationBasheer, A.B.M. & Moori, J. 2017. On a group of the Form 210:(U5(2):2). Italian Journal of Pure and Applied Mathematics, 37:645-658. [http://ijpam.uniud.it/journal/onl_2017-37.htm]
dc.identifier.issn1126-8042
dc.identifier.urihttp://ijpam.uniud.it/journal/onl_2017-37.htm
dc.identifier.urihttp://hdl.handle.net/10394/30399
dc.language.isoen
dc.publisherForum-Editrice Universitaria Udinese Srl
dc.subjectGroup extensions
dc.subjectunitary group
dc.subjectextra-special p-group
dc.subjectcharacter table
dc.subjectinertia groups
dc.subjectFischer matrices
dc.titleOn a group of the Form 210:(U5(2):2)
dc.typeArticle

Files