Trigonal curves and algebro-geometric solutions to soliton hierarchies II
dc.contributor.author | Ma, Wen-Xiu | |
dc.contributor.researchID | 30109760 - Ma, Wen-Xiu | |
dc.date.accessioned | 2018-07-27T08:08:56Z | |
dc.date.available | 2018-07-27T08:08:56Z | |
dc.date.issued | 2017 | |
dc.description.abstract | This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel-Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker-Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker-Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy. | |
dc.identifier.citation | Ma, W. 2017. Trigonal curves and algebro-geometric solutions to soliton hierarchies II. Proceedings of the Royal Society A-mathematical Physical and Engineering Sciences, 473:1-20. [https://doi.org/10.1098/rspa.2017.0233] | |
dc.identifier.issn | 1364-5021 | |
dc.identifier.issn | 1471-2946 (Online) | |
dc.identifier.uri | https://doi.org/10.1098/rspa.2017.0233 | |
dc.identifier.uri | http://hdl.handle.net/10394/30345 | |
dc.language.iso | en | |
dc.publisher | Royal Society | |
dc.subject | Baker-Akhiezer function | |
dc.subject | algebro-geometric solution | |
dc.subject | trigonal curve | |
dc.title | Trigonal curves and algebro-geometric solutions to soliton hierarchies II | |
dc.type | Article |