NWU Institutional Repository

Trigonal curves and algebro-geometric solutions to soliton hierarchies II

dc.contributor.authorMa, Wen-Xiu
dc.contributor.researchID30109760 - Ma, Wen-Xiu
dc.date.accessioned2018-07-27T08:08:56Z
dc.date.available2018-07-27T08:08:56Z
dc.date.issued2017
dc.description.abstractThis is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel-Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker-Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker-Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.
dc.identifier.citationMa, W. 2017. Trigonal curves and algebro-geometric solutions to soliton hierarchies II. Proceedings of the Royal Society A-mathematical Physical and Engineering Sciences, 473:1-20. [https://doi.org/10.1098/rspa.2017.0233]
dc.identifier.issn1364-5021
dc.identifier.issn1471-2946 (Online)
dc.identifier.urihttps://doi.org/10.1098/rspa.2017.0233
dc.identifier.urihttp://hdl.handle.net/10394/30345
dc.language.isoen
dc.publisherRoyal Society
dc.subjectBaker-Akhiezer function
dc.subjectalgebro-geometric solution
dc.subjecttrigonal curve
dc.titleTrigonal curves and algebro-geometric solutions to soliton hierarchies II
dc.typeArticle

Files