NWU Institutional Repository

Fourier inference for stochastic volatility models with heavy-tailed innovations

dc.contributor.authorEbner, Bruno
dc.contributor.authorMeintanis, Simos G.
dc.contributor.authorKlar, Bernhard
dc.contributor.researchID21262977 - Meintanis, Simos George
dc.date.accessioned2017-04-07T06:58:21Z
dc.date.available2017-04-07T06:58:21Z
dc.date.issued2018
dc.description.abstractWe consider estimation of stochastic volatility models which are driven by a heavy-tailed innovation distribution. Exploiting the simple structure of the characteristic function of suitably transformed observations we propose an estimator which minimizes a weighted L2-type distance between the theoretical characteristic function of these observations and an empirical counterpart. A related goodness-of-fit test is also proposed. Monte-Carlo results are presented. The procedures are also applied to real data from the financial marketsen_US
dc.identifier.citationEbner, B. et al. 2018. Fourier inference for stochastic volatility models with heavy-tailed innovations. Statistical papers, 59(3):1043-1060. [https://doi.org/10.1007/s00362-016-0803-6]en_US
dc.identifier.issn0932-5026
dc.identifier.issn1613-9798 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/21163
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs00362-016-0803-6
dc.identifier.urihttps://doi.org/10.1007/s00362-016-0803-6
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectStochastic volatility modelen_US
dc.subjectMinimum distance estimationen_US
dc.subjectHeavy-tailed distributionen_US
dc.subjectCharacteristic functionen_US
dc.titleFourier inference for stochastic volatility models with heavy-tailed innovationsen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: