State space formulas for a suboptimal rational Leech problem I: maximum entropy solution
| dc.contributor.author | Frazho, A.E. | |
| dc.contributor.author | Ter Horst, S. | |
| dc.contributor.author | Kaashoek, M.A. | |
| dc.contributor.researchID | 24116327 - Ter Horst, Sanne | |
| dc.date.accessioned | 2016-01-27T05:59:44Z | |
| dc.date.available | 2016-01-27T05:59:44Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | For the strictly positive case (the suboptimal case) the maximum entropy solution X to the Leech problem G(z)X(z) = K(z) and \({\|X\|_\infty={\rm sup}_{|z| \leq 1}\| X(z )\| \leq 1}\), with G and K stable rational matrix functions, is proved to be a stable rational matrix function. An explicit state space realization for X is given, and \({\| X \|_\infty}\) turns out to be strictly less than one. The matrices involved in this realization are computed from the matrices appearing in a state space realization of the data functions G and K. A formula for the entropy of X is also given | en_US |
| dc.description.uri | http://dx.doi.org/10.1007/s00020-014-2147-8 | |
| dc.description.uri | http://link.springer.com/journal/20 | |
| dc.identifier.citation | Frazho, A.E. et al. 2014. State space formulas for a suboptimal rational Leech problem I: maximum entropy solution. Integral equations and operator theory, 79(4):533-553. [http://link.springer.com/journal/20] | en_US |
| dc.identifier.issn | 0378-620X | |
| dc.identifier.issn | 1420-8989 (Online) | |
| dc.identifier.uri | http://hdl.handle.net/10394/16044 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Verlag | en_US |
| dc.subject | Leech problem | en_US |
| dc.subject | stable rational matrix functions | en_US |
| dc.subject | commutant lifting theorem | en_US |
| dc.subject | state space representations | en_US |
| dc.subject | algebraic Riccati equation | en_US |
| dc.title | State space formulas for a suboptimal rational Leech problem I: maximum entropy solution | en_US |
| dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.61 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
