NWU Institutional Repository

Solar flare prediction with temporal convolutional networks

dc.contributor.authorKrynauw, Dewald D.
dc.contributor.authorDavel, Marelie H.
dc.contributor.authorLotz, Stefan
dc.date.accessioned2020-01-27T13:35:35Z
dc.date.available2020-01-27T13:35:35Z
dc.date.issued2019-12
dc.description.abstractSequences are typically modelled with recurrent architectures, but growing research is finding convolutional architectures to also work well for sequence modelling [1]. We explore the performance of Temporal Convolutional Networks (TCNs) when applied to an important sequence modelling task: solar flare prediction. We take this approach, as our future goal is to apply techniques developed for probing and interpreting general convolutional neural networks (CNNs) to solar flare prediction.en_US
dc.identifier.citationDewald D. Krynauw, Marelie H. Davel and Stefan Lotz, “Solar flare prediction with temporal convolutional networks“, In Proc. South African Forum for Artificial Intelligence Research (FAIR2019) (Work in Progress), Cape Town, South Africa, December 2019.en_US
dc.identifier.issn1613-0073
dc.identifier.urihttp://hdl.handle.net/10394/33959
dc.language.isoenen_US
dc.publisherIn Proc. South African Forum for Artificial Intelligence Research (FAIR2019)en_US
dc.subjectSolar flareen_US
dc.subjectprediction with temporal convolutional networksen_US
dc.titleSolar flare prediction with temporal convolutional networksen_US
dc.typeOtheren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
krynauw-2019-solar-flare-prediction.pdf
Size:
348.93 KB
Format:
Adobe Portable Document Format
Description:
Solar flare prediction with temporal convolutional networks

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: