• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cloning and expression of human recombinant isoform a of glycine–N–acyltransferase

    Thumbnail
    View/Open
    Grundling_DA.pdf (2.830Mb)
    Date
    2012
    Author
    Grundling, Daniel Andries
    Metadata
    Show full item record
    Abstract
    Awareness of detoxification, nowadays known as biotransformation, has become an integral part of our daily lives. It is a modern buzz word that is used to promote anything from health food to enhancement of performance in sports. Another lesser known application for detoxification is as a therapy for alleviating symptoms of inborn errors of metabolism. Detoxification is the process where endogenous and xenobiotic metabolites are transformed to less harmful products, in the liver and kidneys, in two phases. Phase 1 detoxification includes oxidation, hydroxylation, dehydrogenation metabolic reduction and hydrolysis. Phase 2 detoxification uses conjugation reactions to increase hydrophillicty of metabolites for excretion in bile and urine. Glycine N-acyltransferse (GLYAT; EC 2.3.1.13) is one of the amino acid conjugation enzymes. There are two variants of human GLYAT. I focused on the full-length mRNA human GLYAT isoform a, with a long term view of using it as a viable therapeutic enzyme for enhanced detoxification of harmful metabolites. I investigated if it is possible to clone and express a biologically active GLYAT. To achieve this goal I used three expression systems: traditional bacterial expression using the pET system; second generation cold shock bacterial expression using the pCOLDTF expression vector to improve solubility of the recombinant protein; and baculovirus expression in insect cells since therein some form of post translation glycosylation of the recombinant protein can occur which might improve solubility and ensure biological activity. The recombinant GLYAT expressed well in all three expression systems but was aggregated and no enzyme activity could be detected. A denature and renature system was also used to collect aggregated recombinant GLYAT and used to try to refold the recombinant protein in appropriate refolding buffers to improve solubility and obtain biological activity. The solubility of the recombinant GLYAT was improved but it remained biologically inactive.
    URI
    http://hdl.handle.net/10394/9055
    Collections
    • Natural and Agricultural Sciences [1801]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV