Show simple item record

dc.contributor.authorBaitshenyetsi, L.T.
dc.contributor.authorHattingh, J.M.
dc.contributor.authorKruger, H.A.
dc.date.accessioned2013-02-27T09:28:02Z
dc.date.available2013-02-27T09:28:02Z
dc.date.issued2011
dc.identifier.citationBaitshenyetsi, L.T. et al. 2011. Tiragatso ya itlhagiso ya aetlhare se se okeditsweng ka kgetsi mo bothateng jwa popo ya metato ya dipeipi tsa oli. Orion, 27(2):101-117. [http://dx.doi.org/10.5784/27-2-100]en_US
dc.identifier.issn0259-191X
dc.identifier.issn2224-0004 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/8247
dc.identifier.urihttp://dx.doi.org/10.5784/27-2-100
dc.identifier.urihttp://orion.journals.ac.za/pub/article/view/100
dc.description.abstractGo na le mathata a mantsi a ditshwetso tsa tiriso tse di welang mo mathateng a a mo setlhopheng sa kelelo ya kgokagano le palo e kgolo ya dikai tsa tiragatso tse di ka bonwang mo dikgaolong jaaka tsa neeletsanyokgakala, thwalo, boenjineri, saense ya dikhomphutara jalo le jalo. Mo pampiring e, kgonagalo ya go tlhagisa mmotlele wa kelelo ya kgokagano o o leng mmotlele wa kgokagano ya setlhare mme morago re e rarabolole ka go dirisa itlhagiso ya setlhare se se okeditsweng ka kgetsi ka go e batlisisa. Go bapisa le go tlhwatlhwafatsa thekeniki e e tlhagisiwang, thuto ya nnete e e totobetseng e e dirilweng (bothata jwa popo ya motato wa dipeipi tsa oli) e tlhophilwe go tswa mo dikwalong gore e dirisiwe go nna motheo wa porojeke e ya patlisiso. Ka go latela pono ya bothata jwa popo ya metato ya dipeipi, tlhabololo ya sekao sa setlhare se se okeditsweng ka kgetsi se tlaa tlhagisiwa. Tiragatso ya mokgwa o mo bothateng jwa popo ya metato ya dipeipi tsa oli e tlaa tlhagisiwa morago. Maduo a a bonwang a tlaa tlhagisiwa mme a bontsha gore go na le boleng jwa go ka dirisa itlhagiso ya setlhare se se okeditsweng ka kgetsi go ka rarabolola tse dingwe tsa mathata a kelelo ya dikgokagano.en_US
dc.description.abstractThere are many practical decision problems that fall in the category of network flow problems and numerous examples of applications can be found in areas such as telecommunication, logistics, engineering and computer science. In this paper, the feasibility of representing a network flow model as a tree network model and subsequently solving it using an extended tree knapsack approach is investigated. To compare and validate the proposed technique, a specific case study (an oil pipeline design problem) was chosen from the literature that can be used as a basis for the paper. Following on an overview of the pipeline design problem, the extended tree knapsack model is developed. The application of this approach to the oil pipeline design problem is then presented. Results indicate that it is feasible to apply an extended tree knapsack approach to solve certain network flow problems.
dc.language.isoenen_US
dc.publisherUniversity of Stellenboschen_US
dc.subjectDikao tsa kelelo dikgokaganoen_US
dc.subjectnetwork flow modelsen_US
dc.subjecttlhamomananeo ya ka mela ya intejereen_US
dc.subjectinteger linear programmingen_US
dc.subjectsekao sa setlhare se se okeditsweng ka kgetsien_US
dc.subjectextended tree knapsack modelen_US
dc.titleTiragatso ya itlhagiso ya aetlhare se se okeditsweng ka kgetsi mo bothateng jwa popo ya metato ya dipeipi tsa olien_US
dc.typeArticleen_US
dc.contributor.researchID12066621 - Kruger, Hendrik Abraham
dc.contributor.researchID10170758 - Hattingh, Johannes Michiel
dc.contributor.researchID16829166 - Baitshenyetsi, Tumo Lyell


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record