NWU Institutional Repository

On the propagation times and energy losses of cosmic rays in the heliosphere

Loading...
Thumbnail Image

Date

Authors

Strauss, R.D.
Potgieter, M.S.
Kopp, A.
Büsching, I.

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union

Abstract

We present calculations of the propagation times and energy losses of cosmic rays as they are transported through the heliosphere. By calculating these quantities for a spatially 1D scenario, we benchmark our numerical model, which uses stochastic differential equations to solve the relevant transport equation, with known analytical solutions. The comparison is successful and serves as a vindication of the modeling approach. A spatially 3D version of the modulation model is subsequently used to calculate the propagation times and energy losses of galactic electrons and protons in different drift cycles. We find that the propagation times of electrons are longer than those of the protons at the same energy. Furthermore, the propagation times are longer in the drift cycle when the particles reach the Earth by drifting inward along the heliospheric current sheet. The calculated energy losses follow this same general trend. The energy losses suffered by the electrons are comparable to those of the protons, which is in contrast to the generally held perception that electrons experience little energy losses during their propagation through the heliosphere.

Description

Citation

Strauss, R.D. et al. 2011. On the propagation times and energy losses of cosmic rays in the heliosphere. Journal of geophysical research. Space physics, 116: Article no A12105. [http://dx.doi.org/10.1029/2011JA016831]

Endorsement

Review

Supplemented By

Referenced By