• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    VHE y-ray emission of PKS 2155-304: spectral and temporal variability

    Thumbnail
    Date
    2010
    Author
    Abramowski, A.
    Büsching, I.
    Davids, I.D.
    De Jager, O.C.
    Holleran, M.
    Raubenheimer, B.C.
    Venter, C.
    H.E.S.S. Collaboration
    Metadata
    Show full item record
    Abstract
    Context. Observations of very high-energy γ-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects lead to a better understanding of the mechanisms in play. Aims. To investigate the spectral and temporal variability of VHE (>100 GeV) γ-rays of the well-known high-frequency-peaked BL Lac object PKS 2155–304 with the HESS imaging atmospheric Cherenkov telescopes over a wide range of flux states. Methods. Data collected from 2005 to 2007 were analyzed. Spectra were derived on time scales ranging from 3 years to 4 min. Light curve variability was studied through doubling timescales and structure functions and compared with red noise process simulations. Results. The source was found to be in a low state from 2005 to 2007, except for a set of exceptional flares that occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of (4.32 ± 0.09stat ± 0.86syst) × 10-11 cm-2 s-1 above 200 GeV, or approximately of the Crab Nebula, and a power-law photon index of Γ = 3.53 ± 0.06stat ± 0.10syst. During the flares of July 2006, doubling timescales of ~2 min are found. The spectral index variation is examined over two orders of magnitude in flux, yielding different behavior at low and high fluxes, which is a new phenomenon in VHE γ-ray emitting blazars. The variability amplitude characterized by the fractional rms Fvar is strongly energy-dependent and is . The light curve rms correlates with the flux. This is the signature of a multiplicative process that can be accounted for as a red noise with a Fourier index of ~2. Conclusions. This unique data set shows evidence of a low-level γ-ray emission state from PKS 2155–304 that possibly has a different origin than the outbursts. The discovery of the light curve lognormal behavior might be an indicator of the origin of aperiodic variability in blazars
    URI
    http://hdl.handle.net/10394/6109
    https://doi.org/10.1051/0004-6361/201014484
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV