Show simple item record

dc.contributor.advisorNtema, Ratoeba Piet
dc.contributor.advisorSonono, Masimba Energy
dc.contributor.advisorSidumo, Bonelwa
dc.contributor.authorNgema, Cebolenkosi
dc.date.accessioned2024-05-20T10:12:36Z
dc.date.available2024-05-20T10:12:36Z
dc.date.issued2023
dc.identifier.urihttps://orcid.org/0000-0003-3812-049X
dc.identifier.urihttp://hdl.handle.net/10394/42505
dc.descriptionMaster of Science in Computer Science, North-West University,vanderbijlpark Campusen_US
dc.description.abstractIn thiswork,themainaimwastoemploydeeplearningtechniquesforpredictingcoro- navirusdisease2019(COVID-19)infectionsinSouthAfrica,withafocusonenhancing the predictivecapacityofCOVID-19virusnewinfections.SincethesurgeofCOVID- 19 infections,therehavebeenconcernsaboutthepotentialeffectsitmighthaveinthe healthcare sector,particularlyinefficientlymanagingresourceavailabilityandallocation. VariousresearchersconducteddifferentstudiestopredictthetransmissionofCOVID-19 infectionsusingtechniquessuchasstatisticalpredictiveanalysis,mathematicalmodel- ing, andmachinelearningapproaches.Studiesusingmathematicalandstatisticalmod- eling hadlimitationsinpredictingfutureinfectionwavesastheywereunabletopredict future wavesofinfections,unlikethoseusingmachinelearning.Hence,themainaimof undertakingthisstudywastoexplorethefeasibilityofemployingaspecificsubsetofma- chine learning,specificallydeeplearning,topredictCOVID-19infectionsinSouthAfrica. The COVID-19datasetusedtobuildthedeeplearningmodelswassourcedfromanopen data repository.Toachievetheaim,thefirststepwastotrainthebasiclongshort-term memory(LSTM),stackedLSTM,andbidirectionalLSTMmodels.LSTM-basedmodels havedemonstratedremarkablecapabilityincapturingtemporaldependencies,whilethe stackedLSTMandthebidirectionalLSTMarchitecturesenhancethiscapabilitybyincor- poratingadditionallayersandbidirectionalinformationflow,respectively.Thenextstep wastoempiricallytestthetrainedmodelsonaCOVID-19realdatasettochecktheirper- formancesbasedontherootmeansquareerror(RMSE).Apersistencemodelthatwas used asabaselinemodeltoevaluateperformancesforthecomplexmodelswasintro- duced. Comparingthepredictionsofthetrainedmodelswiththebaselinemodel,onlythe basic LSTMmodelhadanRMSElowerthanthepersistencemodel.Lastly,identifygaps and challengesinthisstudyandproviderecommendations.Theprimarychallengesand gaps identifiedincludethefactthatthepredictionsweremadeforSouthAfricaoveralland did notcatertosubpopulations.Thisstudyconcludedthattheproposeddeeplearning models exhibitedenhancedpredictabilitycapacityofCOVID-19newinfectionscompared to previousstudiesthatwerereviewed.Additionally,thebasicLSTMmodelwasfoundto be thebestmodelforpredictingCOVID-19infectionsinSouthAfricaasithadthelowest RMSE.en_US
dc.language.isoenen_US
dc.publisherNorth-West University (South Africa)en_US
dc.subjectCOVID-19en_US
dc.subjectInfectionen_US
dc.subjectDeepLearningen_US
dc.subjectPredictionen_US
dc.subjectBasicLSTMen_US
dc.subjectStackedLSTMen_US
dc.subjectBidirectional LSTM.en_US
dc.titlePredicting COVID-19 Infections in South Africa Using Deep Learningen_US
dc.typeThesisen_US
dc.description.thesistypeMastersen_US
dc.contributor.researchID23065176- Ntema, Ratoeba Piet
dc.contributor.researchID23756144- Sonono, Masimba Energy
dc.contributor.researchID31494498- Sidumo, Bonelwa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record