dc.contributor.advisor | Ntema, Ratoeba Piet | |
dc.contributor.advisor | Sonono, Masimba Energy | |
dc.contributor.advisor | Sidumo, Bonelwa | |
dc.contributor.author | Ngema, Cebolenkosi | |
dc.date.accessioned | 2024-05-20T10:12:36Z | |
dc.date.available | 2024-05-20T10:12:36Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://orcid.org/0000-0003-3812-049X | |
dc.identifier.uri | http://hdl.handle.net/10394/42505 | |
dc.description | Master of Science in Computer Science, North-West University,vanderbijlpark Campus | en_US |
dc.description.abstract | In thiswork,themainaimwastoemploydeeplearningtechniquesforpredictingcoro-
navirusdisease2019(COVID-19)infectionsinSouthAfrica,withafocusonenhancing
the predictivecapacityofCOVID-19virusnewinfections.SincethesurgeofCOVID-
19 infections,therehavebeenconcernsaboutthepotentialeffectsitmighthaveinthe
healthcare sector,particularlyinefficientlymanagingresourceavailabilityandallocation.
VariousresearchersconducteddifferentstudiestopredictthetransmissionofCOVID-19
infectionsusingtechniquessuchasstatisticalpredictiveanalysis,mathematicalmodel-
ing, andmachinelearningapproaches.Studiesusingmathematicalandstatisticalmod-
eling hadlimitationsinpredictingfutureinfectionwavesastheywereunabletopredict
future wavesofinfections,unlikethoseusingmachinelearning.Hence,themainaimof
undertakingthisstudywastoexplorethefeasibilityofemployingaspecificsubsetofma-
chine learning,specificallydeeplearning,topredictCOVID-19infectionsinSouthAfrica.
The COVID-19datasetusedtobuildthedeeplearningmodelswassourcedfromanopen
data repository.Toachievetheaim,thefirststepwastotrainthebasiclongshort-term
memory(LSTM),stackedLSTM,andbidirectionalLSTMmodels.LSTM-basedmodels
havedemonstratedremarkablecapabilityincapturingtemporaldependencies,whilethe
stackedLSTMandthebidirectionalLSTMarchitecturesenhancethiscapabilitybyincor-
poratingadditionallayersandbidirectionalinformationflow,respectively.Thenextstep
wastoempiricallytestthetrainedmodelsonaCOVID-19realdatasettochecktheirper-
formancesbasedontherootmeansquareerror(RMSE).Apersistencemodelthatwas
used asabaselinemodeltoevaluateperformancesforthecomplexmodelswasintro-
duced. Comparingthepredictionsofthetrainedmodelswiththebaselinemodel,onlythe
basic LSTMmodelhadanRMSElowerthanthepersistencemodel.Lastly,identifygaps
and challengesinthisstudyandproviderecommendations.Theprimarychallengesand
gaps identifiedincludethefactthatthepredictionsweremadeforSouthAfricaoveralland
did notcatertosubpopulations.Thisstudyconcludedthattheproposeddeeplearning
models exhibitedenhancedpredictabilitycapacityofCOVID-19newinfectionscompared
to previousstudiesthatwerereviewed.Additionally,thebasicLSTMmodelwasfoundto
be thebestmodelforpredictingCOVID-19infectionsinSouthAfricaasithadthelowest
RMSE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | North-West University (South Africa) | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Infection | en_US |
dc.subject | DeepLearning | en_US |
dc.subject | Prediction | en_US |
dc.subject | BasicLSTM | en_US |
dc.subject | StackedLSTM | en_US |
dc.subject | Bidirectional LSTM. | en_US |
dc.title | Predicting COVID-19 Infections in South Africa Using Deep Learning | en_US |
dc.type | Thesis | en_US |
dc.description.thesistype | Masters | en_US |
dc.contributor.researchID | 23065176- Ntema, Ratoeba Piet | |
dc.contributor.researchID | 23756144- Sonono, Masimba Energy | |
dc.contributor.researchID | 31494498- Sidumo, Bonelwa | |