Predicting COVID-19 Infections in South Africa Using Deep Learning
Abstract
In thiswork,themainaimwastoemploydeeplearningtechniquesforpredictingcoro-
navirusdisease2019(COVID-19)infectionsinSouthAfrica,withafocusonenhancing
the predictivecapacityofCOVID-19virusnewinfections.SincethesurgeofCOVID-
19 infections,therehavebeenconcernsaboutthepotentialeffectsitmighthaveinthe
healthcare sector,particularlyinefficientlymanagingresourceavailabilityandallocation.
VariousresearchersconducteddifferentstudiestopredictthetransmissionofCOVID-19
infectionsusingtechniquessuchasstatisticalpredictiveanalysis,mathematicalmodel-
ing, andmachinelearningapproaches.Studiesusingmathematicalandstatisticalmod-
eling hadlimitationsinpredictingfutureinfectionwavesastheywereunabletopredict
future wavesofinfections,unlikethoseusingmachinelearning.Hence,themainaimof
undertakingthisstudywastoexplorethefeasibilityofemployingaspecificsubsetofma-
chine learning,specificallydeeplearning,topredictCOVID-19infectionsinSouthAfrica.
The COVID-19datasetusedtobuildthedeeplearningmodelswassourcedfromanopen
data repository.Toachievetheaim,thefirststepwastotrainthebasiclongshort-term
memory(LSTM),stackedLSTM,andbidirectionalLSTMmodels.LSTM-basedmodels
havedemonstratedremarkablecapabilityincapturingtemporaldependencies,whilethe
stackedLSTMandthebidirectionalLSTMarchitecturesenhancethiscapabilitybyincor-
poratingadditionallayersandbidirectionalinformationflow,respectively.Thenextstep
wastoempiricallytestthetrainedmodelsonaCOVID-19realdatasettochecktheirper-
formancesbasedontherootmeansquareerror(RMSE).Apersistencemodelthatwas
used asabaselinemodeltoevaluateperformancesforthecomplexmodelswasintro-
duced. Comparingthepredictionsofthetrainedmodelswiththebaselinemodel,onlythe
basic LSTMmodelhadanRMSElowerthanthepersistencemodel.Lastly,identifygaps
and challengesinthisstudyandproviderecommendations.Theprimarychallengesand
gaps identifiedincludethefactthatthepredictionsweremadeforSouthAfricaoveralland
did notcatertosubpopulations.Thisstudyconcludedthattheproposeddeeplearning
models exhibitedenhancedpredictabilitycapacityofCOVID-19newinfectionscompared
to previousstudiesthatwerereviewed.Additionally,thebasicLSTMmodelwasfoundto
be thebestmodelforpredictingCOVID-19infectionsinSouthAfricaasithadthelowest
RMSE.