• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting COVID-19 Infections in South Africa Using Deep Learning

    Thumbnail
    View/Open
    Ngema_CL_2024.pdf (2.231Mb)
    Date
    2023
    Author
    Ngema, Cebolenkosi
    Metadata
    Show full item record
    Abstract
    In thiswork,themainaimwastoemploydeeplearningtechniquesforpredictingcoro- navirusdisease2019(COVID-19)infectionsinSouthAfrica,withafocusonenhancing the predictivecapacityofCOVID-19virusnewinfections.SincethesurgeofCOVID- 19 infections,therehavebeenconcernsaboutthepotentialeffectsitmighthaveinthe healthcare sector,particularlyinefficientlymanagingresourceavailabilityandallocation. VariousresearchersconducteddifferentstudiestopredictthetransmissionofCOVID-19 infectionsusingtechniquessuchasstatisticalpredictiveanalysis,mathematicalmodel- ing, andmachinelearningapproaches.Studiesusingmathematicalandstatisticalmod- eling hadlimitationsinpredictingfutureinfectionwavesastheywereunabletopredict future wavesofinfections,unlikethoseusingmachinelearning.Hence,themainaimof undertakingthisstudywastoexplorethefeasibilityofemployingaspecificsubsetofma- chine learning,specificallydeeplearning,topredictCOVID-19infectionsinSouthAfrica. The COVID-19datasetusedtobuildthedeeplearningmodelswassourcedfromanopen data repository.Toachievetheaim,thefirststepwastotrainthebasiclongshort-term memory(LSTM),stackedLSTM,andbidirectionalLSTMmodels.LSTM-basedmodels havedemonstratedremarkablecapabilityincapturingtemporaldependencies,whilethe stackedLSTMandthebidirectionalLSTMarchitecturesenhancethiscapabilitybyincor- poratingadditionallayersandbidirectionalinformationflow,respectively.Thenextstep wastoempiricallytestthetrainedmodelsonaCOVID-19realdatasettochecktheirper- formancesbasedontherootmeansquareerror(RMSE).Apersistencemodelthatwas used asabaselinemodeltoevaluateperformancesforthecomplexmodelswasintro- duced. Comparingthepredictionsofthetrainedmodelswiththebaselinemodel,onlythe basic LSTMmodelhadanRMSElowerthanthepersistencemodel.Lastly,identifygaps and challengesinthisstudyandproviderecommendations.Theprimarychallengesand gaps identifiedincludethefactthatthepredictionsweremadeforSouthAfricaoveralland did notcatertosubpopulations.Thisstudyconcludedthattheproposeddeeplearning models exhibitedenhancedpredictabilitycapacityofCOVID-19newinfectionscompared to previousstudiesthatwerereviewed.Additionally,thebasicLSTMmodelwasfoundto be thebestmodelforpredictingCOVID-19infectionsinSouthAfricaasithadthelowest RMSE.
    URI
    https://orcid.org/0000-0003-3812-049X
    http://hdl.handle.net/10394/42505
    Collections
    • Natural and Agricultural Sciences [2757]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV