• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical modeling of leakage flow through labyrinth seals

    Thumbnail
    View/Open
    joubert_l.pdf (9.946Mb)
    Date
    2003
    Author
    Joubert, Stephanus Lourens
    Metadata
    Show full item record
    Abstract
    Optimization of gas turbine systems has identified the need for simplified mathematical models to calculate the losses experienced within turbo machines. One such loss is that of the flow through labyrinth seals. As part of a larger study, this study concentrates on the development of such loss models to aid in the performance prediction of turbo machines. The aim of this study was therefore firstly to understand the nature of labyrinth leakage flows and secondly to investigate mathematical models to calculate or predict such leakages through most common geometries. Finally the ability of these models was evaluated by implementing the models into an "engineering tool" in Engineering Equation Solver (EES). From a detailed literature survey, a few models for calculating and describing labyrinth seal leakages were identified. An "engineering tool" was subsequently developed by combining these models and the governing coefficients in the EES software. Although experimental validation would have been the optimum, a lack of such facilities together with a limited budget required alternative methods to be investigated. It was therefore decided to use Computational Fluid Dynamics (CFD) software such as Star-CD and Fluent. These software packages are accepted by the industry as a design standard and visualizing tool for validation. The results obtained compared favourably with that of the "engineering tool". It therefore proved that the suggested models offer good potential to be used for performance prediction of labyrinth seals.
    URI
    http://hdl.handle.net/10394/389
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV