• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Steel slab surface quality prediction using neural networks

    Thumbnail
    View/Open
    ackerman_mj.pdf (7.796Mb)
    Date
    2003
    Author
    Ackerman, Mattheus Johannes
    Metadata
    Show full item record
    Abstract
    Columbus Stainless grinds the majority of the steel slabs that are produced to improve the surface quality. However, the surface quality of some slabs is good enough not to be ground. If a reliable method can be found to identify these slabs, the production costs associated with grinding can be saved. Initially slabs were selected manually based on knowledge of the process parameters that affect the steel surface quality. This was not successful and may have been due to the interaction between variables and non-linear effects that were not taken into account. A neural network approach was therefore considered. A multilayer perceptron neural network was used for defect prediction. The neural network is trained by repeatedly attempting to match input data to the corresponding output data. Linear regression and decision tree models were also trained for comparison. The neural networks performed the best. The effectiveness of the models was tested using a test data set (data not used during the training of the model) and the neural networks gave high levels of accuracy (greater than 75% for both defect and no-defect cases). A committee of models was also trained, but this did not improve the prediction accuracy. Neural networks provided a powerful tool to predict the slab surface quality. This has enabled Columbus Stainless to limit the deterioration in the steel quality associated with non-grinding of slabs.
    URI
    http://hdl.handle.net/10394/382
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV