• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Task-specific strength increases after lower-limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis

    Thumbnail
    View/Open
    Task_specific_strength.pdf (2.872Mb)
    Date
    2020
    Author
    Ansdell, Paul
    Howatson, Glyn
    Brownstein, Callum G.
    Škarabot, Jakob
    Angius, Luca
    Metadata
    Show full item record
    Abstract
    Neural adaptations subserving strength increases have been shown to be task-specific, but responses and adaptation to lower-limb compound exercises such as the squat are commonly assessed in a single-limb isometric task. This two-part study assessed neuromuscular responses to an acute bout (Study A) and 4 weeks (Study B) of squat resistance training at 80% of one-repetition-maximum, with measures taken during a task-specific isometric squat (IS) and non-specific isometric knee extension (KE). Eighteen healthy volunteers (25 ± 5 years) were randomised into either a training (n = 10) or a control (n = 8) group. Neural responses were evoked at the intracortical, corticospinal and spinal levels, and muscle thickness was assessed using ultrasound. The results of Study A showed that the acute bout of squat resistance training decreased maximum voluntary contraction (MVC) for up to 45 min post-exercise (−23%, P < 0.001). From 15–45 min post-exercise, spinally evoked responses were increased in both tasks (P = 0.008); however, no other evoked responses were affected (P ≥ 0.240). Study B demonstrated that following short-term resistance training, participants improved their one repetition maximum squat (+35%, P < 0.001), which was reflected by a task-specific increase in IS MVC (+49%, P = 0.001), but not KE (+1%, P = 0.882). However, no training-induced changes were observed in muscle thickness (P = 0.468) or any evoked responses (P = 0.141). Adjustments in spinal motoneuronal excitability are evident after acute resistance training. After a period of short-term training, there were no changes in the responses to central nervous system stimulation, which suggests that alterations in corticospinal properties of the vastus lateralis might not contribute to increases in strength
    URI
    http://hdl.handle.net/10394/34730
    https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP088629
    https://doi.org/10.1113/EP088629
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV