• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Particle-attached riverine bacteriome shifts in a pollutant-resistant and pathogenic community during a Mediterranean extreme storm event

    Thumbnail
    Date
    2020
    Author
    Noyer, Mégane
    Verneau, Olivier
    Reoyo-Prats, Brice
    Aubert, Dominique
    Bernard, Maria
    Metadata
    Show full item record
    Abstract
    Rivers are representative of the overall contamination found in their catchment area. Contaminant concentrations in watercourses depend on numerous factors including land use and rainfall events. Globally, in Mediterranean regions, rainstorms are at the origin of fluvial multipollution phenomena as a result of Combined Sewer Overflows (CSOs) and floods. Large loads of urban-associated microorganisms, including faecal bacteria, are released from CSOs which place public health – as well as ecosystems – at risk. The impacts of freshwater contamination on river ecosystems have not yet been adequately addressed, as is the case for the release of pollutant mixtures linked to extreme weather events. In this context, microbial communities provide critical ecosystem services as they are the only biological compartment capable of degrading or transforming pollutants. Through the use of 16S rRNA gene metabarcoding of environmental DNA at different seasons and during a flood event in a typical Mediterranean coastal river, we show that the impacts of multipollution phenomena on structural shifts in the particle-attached riverine bacteriome were greater than those of seasonality. Key players were identified via multivariate statistical modelling combined with network module eigengene analysis. These included species highly resistant to pollutants as well as pathogens. Their rapid response to contaminant mixtures makes them ideal candidates as potential early biosignatures of multipollution stress. Multiple resistance gene transfer is likely enhanced with drastic consequences for the environment and human-health, particularly in a scenario of intensification of extreme hydrological events
    URI
    http://hdl.handle.net/10394/34724
    https://www.sciencedirect.com/science/article/pii/S004896972032564X
    https://doi.org/10.1016/j.scitotenv.2020.139047
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV