• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of dissolution of copper from a chalcopyrite carbonatite ore of South Africa

    Thumbnail
    View/Open
    Prediction_of_dissolution.pdf (889.7Kb)
    Date
    2018
    Author
    Barlow, Brad
    Fosso-Kankeu, Elvis
    Nyembwe, Kolela
    Waanders, Frans
    Malenga, Edward Ntumba
    Metadata
    Show full item record
    Abstract
    Chalcopyrite accounts for 70% of all copper bearing minerals and therefore has been studied closely to understand the dissolution kinetics in hope of overcoming the passivation film and increasing the extraction rates of copper. In this study carbonatite samples were obtained from a mining company in South Africa. The carbonatite samples were leached and the leachates were assessed for the metal ions content, pH, electrical conductivity (EC), RedOx potential (RP), acidity, major anions (sulphate, chloride) as well as iron ion concentration for speciation prediction. Speciation of metal ions was conducted through the use of PHREEQC modelling software. The main objective of the study was to determine the kinetic dissolution pattern of the run of mine (ROM) chalcopyrite samples from the carbonatite host rock over time as a varying factor. The mineralogical investigation showed that the ROM sample was dominated by calcite magnesium (Ca0.97 Mg 0.03 (CO3 )). The elemental investigation showed that the sample was dominated by Ca and Fe with mass% of 49.81 and 26.31 respectively. The dissolution curve for copper displayed and overall decrease in dissolution rate of copper clearly showing the effects of passivation on the chalcopyrite mineral; a peak dissolution rate (22.8%) was observed after 7 hours of leaching. From the ICP data the major cation in the leachate of the ROM was determined to be Ca, Cu, Fe and Mg. The PHREEQC results showed that Ca, Cu and Mg was dominant as sulphate salt species while Fe was dominant as a free ionic species (Fe2+)
    URI
    http://hdl.handle.net/10394/34195
    https://www.eares.org/siteadmin/upload/9405EAP1118232.pdf
    https://doi.org/10.17758/EARES4.EAP1118232
    Collections
    • Conference Papers - Potchefstroom Campus [713]
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV