• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydrogen generation by the reaction of mechanochemically activated aluminium and water

    Thumbnail
    View/Open
    7.1.11.7.4 Du Preez SP 21220212.pdf (12.22Mb)
    Date
    2019
    Author
    Du Preez, Stephanus Petrus
    Metadata
    Show full item record
    Abstract
    This dissertation presents a method to generate on-demand and pure hydrogen from neutral pH water using a hydrolysing material, i.e. mechanochemically activated aluminium (Al), under standard ambient conditions. The individual and combined effects of the considered activation compounds, i.e. bismuth (Bi), indium (In), and tin (Sn), on Al during mechanochemical processing were evaluated. Of importance in this study were i) composite hydrolysis reactivity towards water, ii) the effects of activation compounds on Al particle behaviour during mechanochemical activation, i.e. cold-welding, strain hardening, fracturing, and iii) the distribution of activation compounds in Al particles. Several activation compound combinations were considered for investigation, i.e. Bi-In-Sn, Bi-In, Sn-In and Bi- Sn. SEM and EDS analyses were applied to determine particle morphology and surface/subsurface chemical compositions of Al particles pre- and post mechanochemical activation procedures. Scanning electron microscopy (SEM) energy dispersive x-ray spectrometer (EDS) results presented in this study suggests that the considered activation compounds could be distributed relatively homogeneously throughout Al particles by mechanochemical activation. Such a distribution promoted micro-galvanic activity between anodic Al and cathodic Bi, In, and Sn. X-ray diffraction indicated various intermetallic phase formation between Al-activation compound and activation compound-activation compound. These phases formed as a result of mechanochemical activation and in some cases affected the structural failure and/or reactivity of Al particles. Numerous high hydrogen yielding (>95%) composites were prepared. Furthermore, a preliminary method to recover activation compounds from hydrolysed Al using common acids was proposed.
    URI
    https://orcid.org/0000-0001-5214-3693
    http://hdl.handle.net/10394/34160
    Collections
    • Engineering [1424]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV