Show simple item record

dc.contributor.authorGroenewald, G.J.
dc.contributor.authorTer Horst, S.
dc.contributor.authorJaftha, J.
dc.contributor.authorRan, A.C.M.
dc.date.accessioned2019-10-15T09:17:53Z
dc.date.available2019-10-15T09:17:53Z
dc.date.issued2019
dc.identifier.citationGroenewald, G.J. et al. 2019. A Toeplitz-like operator with rational symbol having poles on the unit circle. III The adjoint. Integral equations and operator theory, 91(5): Article no 43. [https://doi.org/10.1007/s00020-019-2542-2]
dc.identifier.issn0378-620X
dc.identifier.issn1420-8989 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/33432
dc.identifier.urihttps://link.springer.com/content/pdf/10.1007%2Fs00020-019-2542-2.pdf
dc.identifier.urihttps://doi.org/10.1007/s00020-019-2542-2
dc.description.abstractThis paper contains a further analysis of the Toeplitz-like operators Tω on Hp with rational symbol ω having poles on the unit circle that were previously studied in Groenewald (Oper Theory Adv Appl 271:239–268, 2018; Oper Theory Adv Appl 272:133–154, 2019). Here the adjoint operator T∗ω is described. In the case where p=2 and ω has poles only on the unit circle T , a description is given for when T∗ω is symmetric and when T∗ω admits a selfadjoint extension. If in addition ω is proper, it is shown that T∗ω coincides with the unbounded Toeplitz operator defined by Sarason (Integr Equ Oper Theory 61:281–298, 2008) and studied further by Rosenfeld (Classes of densely defined multiplication and Toeplitz operators with applications to extensions of RKHS’s, 2013; J Math Anal Appl 440:911–921, 2016)en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectToeplitz operatorsen_US
dc.subjectUnbounded operatorsen_US
dc.subjectAdjointen_US
dc.subjectSymmetric operatorsen_US
dc.titleA Toeplitz-like operator with rational symbol having poles on the unit circle. III. The adjointen_US
dc.typeArticleen_US
dc.contributor.researchID12066680 - Groenewald, Gilbert Joseph
dc.contributor.researchID24116327 - Ter Horst, Sanne


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record