• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Diatoms associated with two South African kelp species: Ecklonia maxima and Laminaria pallida

    Thumbnail
    Date
    2019
    Author
    Mayombo, N.A.S.
    Majewska, R.
    Smit, A.J.
    Metadata
    Show full item record
    Abstract
    Kelp forests are believed to host a large biomass of epiphytic fauna and flora, including diatoms, which constitute the base of aquatic food webs and play an important role in the transfer of energy to higher trophic levels. Epiphytic diatom assemblages associated with two common species of South African kelps, Ecklonia maxima and Laminaria pallida, were investigated in this study. Primary blades of adult and juvenile thalli of both kelp species were sampled at False Bay in July 2017 and analysed using scanning electron microscopy. Our findings showed that both kelp species hosted relatively low densities of diatoms (ranging from 7 [SD 5] cells mm−2 on adult specimens of L. pallida to 43 [SD 66] cells mm−2 on blades of juvenile E. maxima), with Amphora and Gomphoseptatum reaching the highest absolute abundances. Although non-metric multidimensional scaling showed overlapping and largely scattered sample sets, a significant relationship between the diatom communities and the species and age of the host macroalga was detected by two-way PERMANOVA. In general, more abundant and diverse diatom communities were observed on juvenile thalli than on adult thalli, with species belonging to Navicula and Rhoicosphenia contributing significantly to the observed dissimilarity. Due to a significant interaction between species and age effects, however, the overall ability of kelp species, their age, and their interaction to explain the variation in diatom community structure was limited. We suggest that the low densities of epiphytic diatoms were directly related to the sloughing of epithelial cells observed in both kelp species. We further speculate that on such unstable substrata some diatom taxa might adapt to an endophytic life to avoid the antifouling mechanisms developed by their hosts
    URI
    http://hdl.handle.net/10394/33429
    https://www.tandfonline.com/doi/abs/10.2989/1814232X.2019.1592778
    https://doi.org/10.2989/1814232X.2019.1592778
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV