• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems

    Thumbnail
    Date
    2019
    Author
    Kumar, Neeraj
    Fosso-Kankeu, Elvis
    Ray, Suprakas Sinha
    Metadata
    Show full item record
    Abstract
    The development of new synthesis approaches for MoS2 is necessary to achieve controlled morphologies and unique physicochemical properties that can improve its efficiency in particular applications. Herein, a facile one-step hydrothermal route is proposed to prepare controllable MoS2 micro/nanostructures with an increased interlayer using sodium diethyldithiocarbamate trihydrate as the new S source at different pH values. To investigate the morphology, chemical composition, and structure of the MoS2 micro/nanostructures, various characterization techniques were used. The obtained microrods, microspheres, and microrods with hairlike structures (denoted as MoS2-N-H) were composed of MoS2 nanosheets with increased interlayer spacing (∼1.0 nm) and utilized for the removal of Pb(II) from aquatic systems. Among the structures, MoS2-N-H demonstrated the highest adsorption capacity (303.04 mg/g) for Pb(II) due to the existence of −S/–C/–N/–O-comprised functional groups on its surface, which led to strong Pb–S complexation and electrostatic attractions. The uptake of Pb(II) onto MoS2-N-H followed pseudo-second-order kinetics and Freundlich isotherm. To evaluate its practical applicability, the adsorbent was employed in real mine water analysis; it was found that MoS2-N-H could adsorb almost 100% of the Pb(II) ions in the presence of various coexisting ions. Additionally, after Pb(II) adsorption, MoS2-N-H was transformed into PbMoO4-xSx spindlelike nanostructures, which were further used for photodegradation of an antibiotic, viz., ciprofloxacin (CIP), to avoid secondary environment waste. Thus, this investigation provides an effective one-pot approach to fabricate controllable MoS2 micro/nanostructures with increased interlayer spacing for water treatment. The utility of these nanostructures in related supercapacitor/battery applications may also be envisaged because of their unique structural properties
    URI
    http://hdl.handle.net/10394/33403
    https://pubs.acs.org/doi/10.1021/acsami.9b03853
    https://doi.org/10.1021/acsami.9b03853
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV