Hilbert and Thompson isometries on cones in JB-algebras
Loading...
Date
Authors
Lemmens, Bas
Roelands, Mark
Wortel, Marten
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
Hilbert’s and Thompson’s metric spaces on the interior of cones in JB-algebras are important
examples of symmetric Banach-Finsler spaces. In this paper we characterize the Hilbert’s
metric isometries on the interiors of cones in JBW-algebras, and the Thompson’s metric
isometries on the interiors of cones in JB-algebras. These characterizations generalize work
by Bosché on the Hilbert’s and Thompson’s metric isometries on symmetric cones, and work
by Hatori and Molnár on the Thompson’s metric isometries on the cone of positive selfadjoint elements in a unital C∗-algebra. To obtain the results we develop a variety of new
geometric and Jordan algebraic techniques
Description
Citation
Lemmens, B. et al. 2019. Hilbert and Thompson isometries on cones in JB-algebras. Mathematische Zeitschrift, 292(3-4):1511-1547. [https://doi.org/10.1007/s00209-018-2144-8]