• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    Thumbnail
    Date
    2009
    Author
    Osifo, Peter O.
    Neomagus, Hein W.J.P.
    Everson, Raymond C.
    Webster, Athena
    Gun, Marius A.
    Metadata
    Show full item record
    Abstract
    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91–99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead
    URI
    http://hdl.handle.net/10394/3300
    https://www.sciencedirect.com/science/article/abs/pii/S0304389409001526#!
    https://doi.org/10.1016/j.jhazmat.2009.01.109
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV