Show simple item record

dc.contributor.authorMzamo, Lulamile
dc.contributor.authorHelberg, Albert
dc.contributor.authorBosch, Sonja
dc.date.accessioned2019-06-07T07:01:52Z
dc.date.available2019-06-07T07:01:52Z
dc.date.issued2019
dc.identifier.citationMzamo, L. et al. 2019. Towards an unsupervised morphological segmenter for isiXhosa. Proceedings, 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Bloemfontein, South Africa, 28-30 Jan. Article no 8704816:166-170. [https://doi.org/10.1109/RoboMech.2019.8704816]en_US
dc.identifier.issn978-1-7281-0369-3 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/32603
dc.identifier.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8704816
dc.identifier.urihttps://doi.org/10.1109/RoboMech.2019.8704816]
dc.description.abstractIn this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempten_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectNatural language processingen_US
dc.subjectUnsupervised machine learningen_US
dc.subjectMorphological segmentationen_US
dc.subjectisiXhosaen_US
dc.titleTowards an unsupervised morphological segmenter for isiXhosaen_US
dc.typePresentationen_US
dc.contributor.researchID12363626 - Helberg, Albertus Stephanus Jacobus
dc.contributor.researchID24827304 - Mzamo, Lulamile


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record