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Abstract�In this paper, branching entropy techniques and 

isiXhosa language heuristics are adapted to develop unsupervised 
morphological segmenters for isiXhosa. An overview of isiXhosa 
segmentation issues is given, followed by a discussion on previous 
work in automated segmentation, and segmentation of isiXhosa 
in particular. Two unsupervised isiXhosa segmenters are 
presented and compared to a random minimum baseline and 
Morfessor-Baseline, a standard in unsupervised word 
segmentation. Morfessor-Baseline outperforms both isiXhosa 
segmenters at 79.10% boundary identification accuracy. The 
IsiXhosa Branching Entropy Segmenter (XBES) performance 
varies depending on the segmentation mode used, with a 
maximum of 73.39%. The IsiXhosa Heuristic Maximum 
Likelihood Segmenter (XHMLS) achieves 72.42%. The study 
suggests that unsupervised isiXhosa morphological segmentation 
is feasible with better optimization of the current attempts. 

Keywords�natural language processing; unsupervised 
machine learning; morphological segmentation; isiXhosa. 

I.  INTRODUCTION  

Human language resources and applications currently 
available in South Africa are of a very basic nature. According 
to [1] this can be attributed to the dependence on Human 
Language Technology (HLT) expert knowledge, scarcity of 
data resources, lack of market demand for African languages, 
and how the particular language relates to other more 
resourced languages. Morphological analysis is one of the 
basic tools in the natural language processing (NLP) of 
agglutinating languages.  The work detailed in this paper is the 
development of morphological analysers for one such 
language, namely isiXhosa.   

IsiXhosa is one of the South African official languages 
belonging to the Bantu language family which are classified as  
�resource scarce languages� [1].  Although some work has 
been done in computational linguistic tools for isiXhosa, it is 
of a limited nature [2].  IsiXhosa is the second largest 
language in South Africa with 8.1 million mother-tongue 
speakers (16% of the South African population), second only 
to isiZulu [3]. 

IsiXhosa is closely related to other Nguni languages such 
as isiZulu, Siswati and isiNdebele and therefore work done in 
it could easily be bootstrapped to these languages as has been 
shown in [4]. 

II. MORPHOLOGICAL SEGMENTATION FOR ISIXHOSA 

A. Morphological Segmentation 

Language is productive, meaning that it produces new 
words from existing words. Morphology, therefore, is the 
study of the internal structure of words [5], and the processes 
involved in language productivity [6]. The major types of 
morphological processes are inflection, derivation and 
compounding. 

 Morphological analysis splits one token, a word, into 
several [6], e.g. the segmentation of a word into its constituent 
morphemes, and classification thereof. Morphemes are the 
smallest meaning bearing component of a word [5]. In 
languages with rich systems of inflection and derivation, 
morphological analysis is needed in information retrieval, 
translation etc. 

Hammarstrom and Borin [7] differentiate between 
morphological segmentation, which splits words into 
constituent morphemes, and analysis, which also classifies the 
identified morphemes, a differentiation originated by Zwicky 
[8]. The task handled in this paper is morphological 
segmentation. 

B. Morphological segmentation in isiXhosa 

IsiXhosa is an agglutinating and polysynthetic language in 
that it usually has many morphemes per word [5]. It is also 
fusional/inflectional because morpheme boundaries are 
sometimes fused and difficult to distinguish.  

IsiXhosa words are composed of a root, prefixes, suffixes 
and circumfixes that attach to the root which is the meaning 
carrying constituent of the word. A circumfix is the 
�simultaneous affixation of a prefix and suffix to a root or a 
stem to express a single meaning� [5]. An example of a 
circumfix in isiXhosa is the combination �a�ang..� in 
isiXhosa negation, e.g. a-ka-hamb-ang-a (he/she did not go). 

 Each of the affixes (i.e. prefixes, suffixes or circumfixes) 
is made up of one or more morphemes. Morphemes follow 
one another in an order prescribed for each word type [9]. In 
isiXhosa, most roots are however bound morphemes, meaning 
that they never appear independently as words which are 
independently meaningful [10]. They at least appear as stems, 
which are word roots suffixed with a termination vowel [9].   
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C. Automated Morphological segmentatin of isiXhosa 

One of the earliest reports on automated morphological 
segmentation of South African languages is that of  [11] on the 
automatic acquisition of a Directed Acyclic Graph (DAG) to 
model the two-level rules for morphological analysers and 
generators. The algorithm was tested on English adjectives, 
inflection of isiXhosa noun locatives and Afrikaans noun 
plurals, with a 100% accuracy for isiXhosa noun locatives 
inflection. 

Bosch et al. [4]  bootstrapped an existing isiZulu 
morphological analyser [12] to other Nguni languages 
including isiXhosa. The study reported that 93.30% of the 
words (181) were analysed. 

Eiselen and Puttkammer [13] presented work on the 
development of text resources for ten South African 
languages, including a morphologically analysed corpus for 
isiXhosa. That morphological segmentation corpus is used in 
this study. The corpus is rated at an accuracy of 84.66%.  

The most recent work for isiXhosa segmentation is that of 
[14] for the development of a rule-based noun stemmer for 
isiXhosa. The exercise reported a segmentation accuracy rate 
of 91% for noun segmentation. 

III. UNSUPERVISED MORPHOLOGICAL SEGMENTATION 

The last works done for morphological segmentation for 
isiXhosa are reported in [13] and [14]. Both works were based 
on linguistic rules. In contrast, the work presented in this 
paper uses unsupervised machine learning in the 
morphological segmentation of isiXhosa. This is attractive 
because it bypasses the need for expensive linguistic experts 
or annotated training data. 

A. Unsupervised Machine Learning 

There are three modes of training a machine learning 
model, i.e. supervised, semi-supervised and unsupervised. [6, 
p. 232]. In supervised learning, the training data contains 
solution examples that the model must generalise from. Data 
in unsupervised training is devoid of such, but only models 
from raw input data as provided. Semi-supervised systems use 
anything in between, from using limited supervised data with 
large amounts of unannotated data to unannotated data with 
heuristics built into the model. 

The work presented in this paper involves looking for 
unsupervised ways of morphologically segmenting isiXhosa. 

B. Unsupervised Morphological Segmentation works 

The earliest works in unsupervised morphological 
segmentation used a form of accessor variety, where a 
morpheme boundary is identifiable by the possible number of 
letters that may follow a sequence of letters [15], [16]. This 
evolved to using mutual information [17], [18], and different 
forms of Branching Entropy [17], [19]. 

Minimum Description Length (MDL) [20] has seen 
extensive use in unsupervised morphological segmentation, 
primarily as a measure of fit of the training data to heuristic 
models and statistical models [21], [22]. The comparative 
standard used in this study, Morfessor-Baseline [23],  uses 
MDL and Maximum likelihood estimation. 

Clustering and paradigmatic models have also been used. 
These involve clustering related words using a similarity 
measure, identifying the stem, and considering the rest as 
sequences of affixes [24], [25]. The similarity measures used 

are Latent Semantic Analysis [26], Dice and Jaccard 
coefficients [6],  Ordered Weighted Aggregator operators [25] 
and affixality measurements [27]. Word context is also 
another technique that is used to identify similar words [28], 
[29]. 

A number of non-parametric Bayesian techniques have 
also shown promise, including Pitman-Yor process based 
models [30], [31] and adaptor grammars [32]. These use 
Markov Chain Monte Carlo (MCMC) simulation with Gibbs 
Sampling [33] for inference. Contrastive Estimation [34], [35] 
is another non-parametric model that is showing elegance and 
promising results. 

A number of studies have used a combination of the above 
techniques and measures [14], [29]. 

C. Choice of unsupervised segmenter for comparison 

To place this work amongst other segmenters, a standard 
in morphological segmentation was chosen for comparison. 
The segmenter had to be publicly available and had to have 
been used for highly agglutinative languages like isiXhosa. 

The Morfessor-Baseline segmenter [23] was chosen 
because it is a good benchmark that has been used extensively 
and is freely available.  A number of studies referred to in the 
previous section use Morfessor-Baseline as a benchmark. 

As a minimum baseline a random segmenter that randomly 
decides whether a point in a word is a boundary of a segment 
or not was implemented. 

IV. UNSUPERVISED ISIXHOSA SEGMENTERS 

This study investigates the use of different variants of 
Branching Entropy as detailed in [36] and propose novel 
isiXhosa heuristics with maximum likelihood estimation.  

This paper presents two unsupervised morphological 
segmenters, one based on variants of branching entropy, the 
IsiXhosa Branching Entropy Segmenter (XBES), and one 
based on isiXhosa heuristics and multi-gram frequencies, the 
IsiXhosa Heuristics Maximum Likelihood Segmenter 
(XHMLS). 

A. How XBES works 

XBES is based on the work of [36], implementing all the 
variants of branching entropy segmentation detailed therein.  

Branching entropy techniques are based on the 
understanding that as one moves through the letters in a word, 
the predictability of the next letter increases, meaning the 
uncertainty reduces. An increase in uncertainty, measured as 
entropy, implies a morpheme boundary. Branching Entropy is 
calculated according to (1), which shows Right Branch 
Entropy and Left Branching Entropy across the Xk and Xk-1 
letters. 

 (1) 

 

  = 
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where,   denotes a string of length n,  is the 
word location between letters  and ,  is the word 
substring from the i-th letter to the j-th letter,  is the 
vocabulary of letter in the language, and  are the 
right branching and left branching entropies respectively. 

Variation of Branching Entropy (VBE), (2), takes 
branching entropy further, by assuming that branching entropy 
generally decreases as one goes along the word [37]. A 
difference that is above zero (0) indicates a boundary: 

 (2) 

Normalised Variation of Branching Entropy (NVBE) is an 
extension of VBE where the VBE is dampened with the word 
location average VBE, and/or the VBE standard deviation: 

 (3) 

Magistry [36] continues to define an n-gram autonomy 
a(x) as: 

 (4) 

where the h�s, the Variation of Branching Entropies, are 
measured at the edges of the n-gram x. The higher the 
autonomy of a word segment the higher the likelihood that it is 
a morpheme. 

 This n-gram autonomy can then be used in scoring a word 
segmentation, such that the segmentation to choose is:  

 (5) 

where Seg(s) is a list of possible segmentations of string s, 
S, a particular segmentation, contains the list of the segments 
of word, wi  is the i-th segment of segmentation S,  a(.) is the 
autonomy measure, and len(.) is the string length. 

XBES implements all the above segmentation variants. 

XBES is trained with character level multi-grams, which 
are character n-grams of different lengths, and stores multi-
gram frequencies. The current implementation of the multi-
gram frequencies is not smoothed, and that would be the next 
development in enhancing XBES. 

B. How XHMLS works 

The isiXhosa Heuristics Maximum Likelihood Segmenter 
(XHMLS) that is proposed is based on the directed graphical 
model of isiXhosa (Fig. 1) and isiXhosa heuristics. 

In Fig. 1 and (6), w  is  a word, S is a word segmentation, r 
is a word root, c  is a circumfix, p  is a prefix, s is a suffix, pi  
is the i-th prefix morpheme, sj  is the j-th suffix morpheme, and 

 and  are preceding sequences of prefix and suffix 
morphemes respectively. 

 
Fig. 1. XHMLS�s Probabilistic Graphical Model 

A word is modelled as a segmentation which consists of a 
root and a circumfix. The circumfix is made up of a prefix and 
a suffix. A prefix is a sequence of prefix morphemes and a 
suffix a sequence of suffix morphemes. The probability of a 
word w is modelled as: 

 (6) 

To minimise the search space the following isiXhosa word 
heuristics are used (e.g. u-ya-ndi-phek-el-a [s/he is cooking for 
me]: 

 The first vowel is always a morpheme; 

 The last vowel is always a morpheme (terminal vowel); 

 Prefix morphemes are complete syllables, except for 
�m� which has a silent vowel when followed by a 
consonant; 

 Suffix morphemes start with a vowel and end in a 
consonant except for the terminal vowel and for �w� 
which has a silent preceding vowel when following a 
consonant; 

 roots start with a consonant. 

The above heuristics are not linguistic, but are meant to 
simplify isiXhosa segmentation. 

During training each training word is split into all possible 
combinations of the above heuristics and statistics are kept in 
three statistical models, i.e. root�circumfix, prefix n-grams 
and suffix-n-gram models. 

As of publication the models are not smoothed and the 
intention is to smooth with modified Kneser-Kney smoothing 
[38]. 
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V. EVALUATION 

This section details the initial evaluation that was done on 
XBES and XHMLS. 

A. Data Sources1 

Raw unannotated isiXhosa data was compiled, to 1.45 
million tokens from the isiXhosa version of the South African 
Constitution [39], isiXhosa stories on the internet and the 
IsiXhosa Genre Classification Corpus [40]. This text is named 
the training corpus. 

For testing purposes the NCHLT IsiXhosa Text Corpus 
(29 511 tokens) was used. 

B. Data Splits 

For development 10000 tokens from the training corpus 
were used for training, and the first 1000 tokens from the 
NCHLT IsiXhosa Text Corpus were used for validation. 

For evaluation training purposes the entirety of the training 
corpus was used.  

For evaluation purposes a subset of the NCHLT corpus 
was used. Because the NCHLT corpus was generated with a 
rule based morphological analyser, the solutions are not all 
strictly segmentations, others include linguistic morphemes. 
Excluding such entries resulted in an evaluation corpus of 
17574 tokens.  

C. Experiment setup 

Training was performed for all four segmenters, i.e. the 
random segmenter, XBES, XHMLS, and Morfessor-Baseline, 
using the entirety of the training corpus, and tested against the 
testing corpus. 

XBES provides an option of using the minimum between 
the right branching entropy and left branching entropies or 
sum of the two. 

Evaluation of the segmentations was measured as 
boundary tagging accuracy, where, in a word, the morpheme 
boundary location is tagged 1 and everything else 0. Accuracy 
measures how many boundaries and non-boundaries the 
segmenter identified correctly. 

D. Results 

Table 1 shows results from the different morphological 
segmenters evaluated. 

 

                                                           
1 The IsiXhosa Genre Classification Corpus and NCHLT 

IsiXhosa Text Corpus are available at the South African 
Language Resource Management Agency, 
(http://rma.nwu.ac.za/index.php)  

 

From Table 1 one notes a minimum accuracy requirement 
of 60.72% from the random segmenter. This implies that any 
segmenter below this threshold actively degrades 
segmentation. 

Morfessor-Baseline outperformed other segmenters by a 
good margin. VBE and NzVBE�sum seemed to be the best 
modes for unsmoothed XBES for isiXhosa with accuracy rates 
of 73.39% and 73.32% respectively.  

For Normalised Variation of Branching Entropy modes, 
the sum of the left and right branching measures performed 
better than the minimum of the two, implying that a smoothing 
effect is better, as the sum is a form of averaging the two 
branching directions. 

 XHMLS provided very good accuracy (72.46%) from an 
unsmoothed language model, and showed promise. 

VI. CONCLUSIONS 

In this paper two possible solutions to the morphological 
segmentation of isiXhosa were proposed. Both techniques use 
unsupervised machine learning. 

The IsiXhosa Branching Entropy Segmenter (XBES) uses 
an adaptation of branching entropy techniques to isiXhosa.  

The use of novel heuristics that limit the search space in 
the unsupervised segmentation isiXhosa combined with 
maximum likelihood estimation was proposed in the isiXhosa 
Heuristic Maximum Likelihood Segmenter (XHMLS). 

Both approaches performed well, considering that their 
language models still needed to be smoothed, compared to the 
standard in morphological segmentation, Morfessor-Baseline. 
XBES�s boundary identification accuracy was measured at 
73.39% and XHMLS at 72.46% compared to Morfessor-
Baseline�s 79.1%. 

The results show promise in the presented techniques 
although more work needs to be done. 

Going forward the intention is to focus on character 
language model smoothing, optimise against overfitting and 
modelling of prefix-suffix morpheme correlations as they are 
prevalent in isiXhosa. 
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