• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control

    Thumbnail
    Date
    2019
    Author
    Hlongwane, Gloria Ntombenhle
    Sekoai, Patrick Thabang
    Meyyappan, Meyya
    Moothi, Kapil
    Metadata
    Show full item record
    Abstract
    The steady increase in population, coupled with the rapid utilization of resources and continuous development of industry and agriculture has led to excess amounts of wastewater with changes in its composition, texture, complexity and toxicity due to the diverse range of pollutants being present in wastewater. The challenges faced by wastewater treatment today are mainly with the complexity of the wastewater as it complicates treatment processes by requiring a combination of technologies, thus resulting in longer treatment times and higher operational costs. Nanotechnology opens up a novel platform that is free from secondary pollution, inexpensive and an effective way to simultaneously remove multiple pollutants from wastewater. Currently, there are a number of studies that have presented a myriad of multi-purpose/multifunctional nanoparticles that simultaneously remove multiple pollutants in water. However, these studies have not been collated to review the direction that nanoparticle assisted wastewater treatment is heading towards. Hence, this critical review explores the feasibility and efficiency of simultaneous removal of co-existing/multiple pollutants in water using nanomaterials. The discussion begins with an introduction of different classes of pollutants and their toxicity followed by an overview and highlights of current research on multipollutant control in water using different nanomaterials as adsorbents, photocatalysts, disinfectants and microbicides. The analysis is concluded with a look at the current attempts being made towards commercialization of multipollutant control/multifunctional nanotechnology inventions. The review presents evidence of simultaneous removal of pathogenic microorganisms, inorganic and organic compound chemical pollutants using nanoparticles. Accordingly, not only is nanotechnology showcased as a promising and an environmentally-friendly way to solve the limitations of current and conventional centralised water and wastewater treatment facilities but is also presented as a good substitute or supplement in areas without those facilities
    URI
    http://hdl.handle.net/10394/32082
    https://www.sciencedirect.com/science/article/pii/S004896971834614X
    https://doi.org/10.1016/j.scitotenv.2018.11.257
    Collections
    • Faculty of Engineering [1136]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV