Show simple item record

dc.contributor.authorGrobler, Jacobus J.
dc.contributor.authorLabuschagne, Coenraad C.A.
dc.date.accessioned2019-03-05T13:59:11Z
dc.date.available2019-03-05T13:59:11Z
dc.date.issued2019
dc.identifier.citationGrobler, J.J. & Labuschagne, C.C.A. 2019. Girsanov’s theorem in vector lattices. Positivity, (In press). [https://doi.org/10.1007/s11117-019-00649-5]en_US
dc.identifier.issn1385-1292
dc.identifier.issn1572-9281 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/31897
dc.identifier.urihttps://link.springer.com/article/10.1007/s11117-019-00649-5
dc.identifier.urihttps://doi.org/10.1007/s11117-019-00649-5
dc.description.abstractIn this paper we formulate and proof Girsanov’s theorem in vector lattices. To reach this goal, we develop the theory of cross-variation processes, derive the cross-variation formula and the Kunita–Watanabe inequality. Also needed and derived are properties of exponential processes, Itô’s rule for multi-dimensional processes and the integration by parts formula for martingales. After proving Girsanov’s theorem for the one-dimensional case, we also discuss the multi-dimensional caseen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectVector latticeen_US
dc.subjectRiesz spaceen_US
dc.subjectStochastic processen_US
dc.subjectBrownian motionen_US
dc.subjectItô integralen_US
dc.subjectMartingaleen_US
dc.subjectGirsanov’s theoremen_US
dc.titleGirsanov’s theorem in vector latticesen_US
dc.typeArticleen_US
dc.contributor.researchID10173501 - Grobler, Jacobus Johannes


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record