• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Girsanov’s theorem in vector lattices

    Thumbnail
    Date
    2019
    Author
    Grobler, Jacobus J.
    Labuschagne, Coenraad C.A.
    Metadata
    Show full item record
    Abstract
    In this paper we formulate and proof Girsanov’s theorem in vector lattices. To reach this goal, we develop the theory of cross-variation processes, derive the cross-variation formula and the Kunita–Watanabe inequality. Also needed and derived are properties of exponential processes, Itô’s rule for multi-dimensional processes and the integration by parts formula for martingales. After proving Girsanov’s theorem for the one-dimensional case, we also discuss the multi-dimensional case
    URI
    http://hdl.handle.net/10394/31897
    https://link.springer.com/article/10.1007/s11117-019-00649-5
    https://doi.org/10.1007/s11117-019-00649-5
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV