• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension

    Thumbnail
    Date
    2018
    Author
    Brownstein, Callum G.
    Howatson, Glyn
    Ansdell, Paul
    Škarabot, Jakob
    Frazer, Ash
    Metadata
    Show full item record
    Abstract
    It has been suggested that task‐specific changes in neurophysiological function (neuroplasticity) should be assessed using testing modalities that replicate the characteristics of the intervention. The squat is a commonly prescribed resistance exercise that has been shown to elicit changes in CNS function. However, previous studies have assessed squat‐induced neuroplasticity using isometric knee extension, potentially confounding the results. The aim of the present study was to assess the agreement between corticospinal and intracortical activity relating to the knee extensors during isometric knee extension compared with an isometric squat task. Eleven males completed a neurophysiological assessment in an isometric squat (IS) and knee‐extension (KE) task matched for joint angles (hip, knee and ankle). Single‐ and paired‐pulse transcranial magnetic stimulation was delivered during isometric contractions at a range of intensities to assess short‐interval cortical inhibition (SICI) and corticospinal excitability. Group mean values for SICI (70 ± 14 versus 63 ± 12% of unconditioned motor evoked potential during IS and KE, respectively) and corticospinal excitability (mean differences 2–5% of the maximal compound muscle action potential at 25, 50, 75 and 100% maximal voluntary contraction between the IS and KE) were not different between the two tasks (P > 0.05) in the vastus lateralis. However, limits of agreement were wide, with poor‐to‐moderate average intraclass correlation coefficients (ICCs) (SICI, ICC3,1 = 0.15; corticospinal excitability, average ICC3,1 range = 0.0–0.63), indicating disparate corticospinal and intracortical activity between the IS and KE. These data highlight the importance of task specificity when assessing the modulation of corticospinal excitability and SICI in response to interventions resulting in neuroplastic changes
    URI
    http://hdl.handle.net/10394/31109
    https://doi.org/10.1113/EP086982
    https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/EP086982
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV