• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde

    Thumbnail
    Date
    2017
    Author
    Elemike, Elias E.
    Onwudiwe, Damian C.
    Nwankwo, Henry U.
    Hosten, Eric C.
    Metadata
    Show full item record
    Abstract
    In this report, a Schiff base, E-N-(2-chlorobenzylidiene)-2-methylaniline, has been synthesized and characterized using Elemental analysis, MS, FTIR, and NMR (1H and 13C) spectroscopic techniques. The structure of the compound was determined by single crystal X-ray diffraction studies. The structure showed a disorder, as if ‘inverted’, around a point between the carbon and nitrogen bridge atoms in a 0.68:0.32 ratio. The methyl and chloride swap positions of the opposite phenyl rings, as well as bridging carbon and nitrogen. The solid state molecular geometry has been compared with the theoretical data obtained using density functional theory (DFT). The ELUMO–HOMO, dipole moments, chemical potential, absolute electronegativity and hardness of the compound were studied by DFT. The corrosion inhibition study of the Schiff base was investigated for mild steel in 1 M HCl medium using electrochemical (potentiodynamic polarization and electrochemical impedance spectroscopy) methods. The results showed that the compound exhibited appreciable inhibition efficiency at higher concentration with potentiodynamic polarization studies revealing a mixed-type inhibitor of predominantly anodic type. Scanning electron micrographs (SEM) and EDX studies revealed the film-forming ability of the ligand on the mild steel surface. Some quantum chemical parameters calculated correlate well with the experimental results. Based on the theoretical and experimental results obtained, the enhanced corrosion inhibition efficiency could be ascribed to the presence of the azomethine and the aromatic rings characteristic of the Schiff base.
    URI
    https://doi.org/10.1016/j.molstruc.2017.01.085
    http://hdl.handle.net/10394/30430
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV