• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of hepatic warfarin metabolism activity in rodenticide-resistant black rats (Rattus rattus) in Tokyo by in situ liver perfusion

    Thumbnail
    Date
    2018
    Author
    Takeda, Kazuki
    Ikenaka, Yoshinori
    Tanaka, Kazuyuki D.
    Nakayama, Shouta M.M.
    Tanikawa, Tsutomu
    Metadata
    Show full item record
    Abstract
    Anti-blood coagulation rodenticides, such as warfarin, have been used all over the world. They inhibit vitamin K epoxide reductase (VKOR), which is necessary for producing several blood clotting factors. This inhibition by rodenticides results in lethal hemorrhage in rodents. However, heavy usage of these agents has led to the appearance of rodenticide-resistant rats. There are two major mechanisms underlying this resistance, i.e., mutation of the target enzyme of warfarin, VKOR, and enhanced metabolism of warfarin. However, there have been few studies regarding the hepatic metabolism of warfarin, which should be related to resistance. To investigate warfarin metabolism in resistant rats, in situ liver perfusion of warfarin was performed with resistant black rats (Rattus rattus) from Tokyo, Japan. Liver perfusion is an in situ methodology that can reveal hepatic function specifically with natural composition of the liver. The results indicated enhanced hepatic warfarin hydroxylation activity compared with sensitive black rats. On the other hand, in an in vitro microsomal warfarin metabolism assay to investigate kinetic parameters of cytochrome P450, which plays a major role in warfarin hydroxylation, the Vmax of resistant rats was slightly but significantly higher compared to the results obtained in the in situ study. These results indicated that another factor like electron donators may also contribute to the enhanced metabolism in addition to high expression of cytochrome P450
    URI
    http://hdl.handle.net/10394/26855
    https://www.sciencedirect.com/science/article/pii/S0048357517305321
    https://doi.org/10.1016/j.pestbp.2018.03.018
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV