• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles

    Thumbnail
    View/Open
    Topical_delivery_of_withania.pdf (799.4Kb)
    Date
    2017
    Author
    Chinembiri, Tawona N.
    Gerber, Minja
    Du Plessis, Lissinda H.
    Du Preez, Jan L.
    Hamman, Josias H.
    Du Plessis, Jeanetta
    Metadata
    Show full item record
    Abstract
    Background: Withania somnifera is a medicinal plant native to India and is known to have anticancer properties. It has been investigated for its anti-melanoma properties, and since melanoma presents on the skin, it is prudent to probe the use of W. somnifera in topical formulations. To enhance topical drug delivery and to allow for controlled release, the use of niosomes and solid lipid nanoparticles (SLNs) as delivery vesicles were explored. Objective: The objective of this study is to determine the stability and topical delivery of W. somnifera crude extracts encapsulated in niosomes and SLNs. Materials and Methods: Water, ethanol, and 50% ethanol crude extracts of W. somnifera were prepared using 24 h soxhlet extraction which were each encapsulated in niosomes and SLNs. Franz cell diffusion studies were conducted with the encapsulated extracts to determine the release and skin penetration of the phytomolecules, withaferin A, and withanolide A. Results: The niosome and SLN formulations had average sizes ranging from 165.9 ± 9.4 to 304.6 ± 52.4 nm with the 50% ethanol extract formulations having the largest size. A small particle size seemed to have correlated with a low encapsulation efficiency (EE) of withaferin A, but a high EE of withanolide A. There was a significant difference (P < 0.05) between the amount of withaferin A and withanolide A that were released from each of the formulations, but only the SLN formulations managed to deliver withaferin A to the stratum corneum-epidermis and epidermis-dermis layers of the skin. Conclusion: SLNs and niosomes were able to encapsulate crude extracts of W. somnifera and release the marker compounds, withaferin A, and withanolide A, for delivery to certain layers in the skin. Abbreviations used: API: Active pharmaceutical ingredient, ANOVA: Analysis of variance, ED: Epidermis-dermis, HPLC: High-performance liquid chromatography, HLB: Hydrophilic-lipophilic balance, NMR: Nuclear magnetic resonance spectroscopy, PDI: Polydispersity index, SLN: Solid lipid nanoparticle, SD: Standard deviation, SCE: Stratum corneum-epidermis, TEM: Transmission electron microscopy
    URI
    http://hdl.handle.net/10394/25904
    https://doi.org/10.4103/pm.pm_489_16
    Collections
    • Faculty of Health Sciences [2404]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV