• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Some Quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies

    Thumbnail
    View/Open
    2015Some_Quinoxalin.pdf (7.582Mb)
    Date
    2015
    Author
    Olasunkanmi, Lukman O.
    Obot, Ime B.
    Kabanda, Mwadham M.
    Ebenso, Eno E.
    Metadata
    Show full item record
    Abstract
    The inhibition of mild steel corrosion in 1 M HCl by some quinoxalin-6-yl derivatives namely 1-[3-phenyl-5-quinoxalin-6-yl-4,5-dihydropyrazol-1-yl]butan-1-one (PQDPB), 1-(3-phenyl-5-(quinoxalin-6-yl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (PQDPP), and 2-phenyl-1-[3-phenyl-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]ethanone (PPQDPE) has been investigated using electrochemical studies and quantum chemical calculations. The results showed that PQDPP is the best corrosion inhibitor among the three compounds studied and the inhibition efficiency increases with increase in concentration for all the inhibitors. The adsorption of inhibitor molecules on mild steel surface was found to be spontaneous and obeyed the Frumkin adsorption isotherm. Scanning electron microscopy (SEM) images confirmed the formation of protective films of the inhibitors on mild steel surface. Quantum chemical calculations showed that the inhibitors have the tendency to be protonated in the acid and the results agree with experimental observations. Monte Carlo simulations were applied to search for the most stable configuration and adsorption energy for the interaction of inhibitors on Fe(110)/100 H2O interface. The results of the Monte Carlo simulations accord with the experimentally determined inhibition efficiencies. Different carbonyl substituents on the common nucleus of the three compounds obviously contributed to the difference in inhibition efficiency.
    URI
    http://hdl.handle.net/10394/25657
    http://pubs.acs.org/doi/10.1021/acs.jpcc.5b03285
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV