• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental and theoretical studies on the corrosion inhibition of mild steel by some sulphonamides in aqueous HCl

    Thumbnail
    Date
    2015
    Author
    Murulana, Lutendo C.
    Kabanda, Mwadham M.
    Ebenso, Eno Effiong
    Metadata
    Show full item record
    Abstract
    Corrosion inhibition studies of mild steel in aqueous HCl by some sulphonamides namely sulphamethazine (SMT), sulphachloropyridazine (SCP), sulphabenzamide (SBZ) and sulphaquinoxaline (SQX) has been investigated using experimental techniques (such as weight loss, potentiodynamic polarization (PDP), Electrochemical Impedance Spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM)) and theoretical methods (using the Density Functional Theory (DFT)). All the compounds effectively inhibited the corrosion process by becoming adsorbed on the metal surface following the Langmuir adsorption isotherm model. The electrochemical results showed that these inhibitors are mixed-type. The theoretical studies were undertaken to provide mechanistic insight into the roles of the different substituents on the corrosion inhibition and adsorption behaviour of the studied compounds. The calculated quantum chemical parameters include the highest occupied molecular orbital (HOMO), the energy of the HOMO, dipole moment and partial atomic charges, etc. The calculated molecular properties were compared across the structures of the four compounds in order to identify trends related to their reactivity and their corrosion inhibition ability. The results also show that the ability of the sulphonamides to inhibit metal corrosion is strongly dependent on the electron donating ability of the substituent group and that the preferred site for interaction with the metal surface, in all the sulphonamides, is the SO2 group.
    URI
    http://hdl.handle.net/10394/25639
    https://doi.org/10.1039/C4RA11414K
    Collections
    • Faculty of Natural and Agricultural Sciences [4789]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV