dc.contributor.author | Gabeleh, Moosa | |
dc.contributor.author | Otafudu, Olivier Olela | |
dc.date.accessioned | 2017-05-16T06:31:57Z | |
dc.date.available | 2017-05-16T06:31:57Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Gabeleh, M. & Otafudu, O.O. 2016. Nonconvex proximal normal structure in convex metric spaces. Banach Journal of Mathematical Analysis, 10(2):400-414. [http://projecteuclid.org/euclid.bjma/1461091166] | |
dc.identifier.issn | 1735-8787 | |
dc.identifier.issn | 1735-8787 (Online) | |
dc.identifier.uri | http://projecteuclid.org/euclid.bjma/1461091166 | |
dc.identifier.uri | http://hdl.handle.net/10394/24191 | |
dc.description.abstract | Given that A and B are two nonempty subsets of the convex metric space (X,d,W), a mapping T:A∪B→A∪B is noncyclic relatively nonexpansive, provided that T(A)⊆A, T(B)⊆B, and d(Tx,Ty)≤d(x,y) for all (x,y)∈A×B. A point (p,q)∈A×B is called a best proximity pair for the mapping T if p=Tp, q=Tq, and d(p,q)=dist(A,B). In this work, we study the existence of best proximity pairs for noncyclic relatively nonexpansive mappings by using the notion of nonconvex proximal normal structure. In this way, we generalize a main result of Eldred, Kirk, and Veeramani. We also establish a common best proximity pair theorem for a commuting family of noncyclic relatively nonexpansive mappings in the setting of convex metric spaces, and as an application we conclude a common fixed-point theorem. | |
dc.language.iso | en | |
dc.publisher | Duke University Press | |
dc.title | Nonconvex proximal normal structure in convex metric spaces | |
dc.type | Article | |
dc.contributor.researchID | 26998513 - Gabeleh, Moosa | |
dc.contributor.researchID | 24803812 - Olela Otafudu, Olivier | |