Show simple item record

dc.contributor.authorGabeleh, Moosa
dc.contributor.authorOtafudu, Olivier Olela
dc.date.accessioned2017-05-16T06:31:57Z
dc.date.available2017-05-16T06:31:57Z
dc.date.issued2016
dc.identifier.citationGabeleh, M. & Otafudu, O.O. 2016. Nonconvex proximal normal structure in convex metric spaces. Banach Journal of Mathematical Analysis, 10(2):400-414. [http://projecteuclid.org/euclid.bjma/1461091166]
dc.identifier.issn1735-8787
dc.identifier.issn1735-8787 (Online)
dc.identifier.urihttp://projecteuclid.org/euclid.bjma/1461091166
dc.identifier.urihttp://hdl.handle.net/10394/24191
dc.description.abstractGiven that A and B are two nonempty subsets of the convex metric space (X,d,W), a mapping T:A∪B→A∪B is noncyclic relatively nonexpansive, provided that T(A)⊆A, T(B)⊆B, and d(Tx,Ty)≤d(x,y) for all (x,y)∈A×B. A point (p,q)∈A×B is called a best proximity pair for the mapping T if p=Tp, q=Tq, and d(p,q)=dist(A,B). In this work, we study the existence of best proximity pairs for noncyclic relatively nonexpansive mappings by using the notion of nonconvex proximal normal structure. In this way, we generalize a main result of Eldred, Kirk, and Veeramani. We also establish a common best proximity pair theorem for a commuting family of noncyclic relatively nonexpansive mappings in the setting of convex metric spaces, and as an application we conclude a common fixed-point theorem.
dc.language.isoen
dc.publisherDuke University Press
dc.titleNonconvex proximal normal structure in convex metric spaces
dc.typeArticle
dc.contributor.researchID26998513 - Gabeleh, Moosa
dc.contributor.researchID24803812 - Olela Otafudu, Olivier


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record