• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonconvex proximal normal structure in convex metric spaces

    Thumbnail
    Date
    2016
    Author
    Gabeleh, Moosa
    Otafudu, Olivier Olela
    Metadata
    Show full item record
    Abstract
    Given that A and B are two nonempty subsets of the convex metric space (X,d,W), a mapping T:A∪B→A∪B is noncyclic relatively nonexpansive, provided that T(A)⊆A, T(B)⊆B, and d(Tx,Ty)≤d(x,y) for all (x,y)∈A×B. A point (p,q)∈A×B is called a best proximity pair for the mapping T if p=Tp, q=Tq, and d(p,q)=dist(A,B). In this work, we study the existence of best proximity pairs for noncyclic relatively nonexpansive mappings by using the notion of nonconvex proximal normal structure. In this way, we generalize a main result of Eldred, Kirk, and Veeramani. We also establish a common best proximity pair theorem for a commuting family of noncyclic relatively nonexpansive mappings in the setting of convex metric spaces, and as an application we conclude a common fixed-point theorem.
    URI
    http://projecteuclid.org/euclid.bjma/1461091166
    http://hdl.handle.net/10394/24191
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV