• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heavy metal tolerance potential of Aspergillus strains isolated from mining sites

    Thumbnail
    Date
    2016
    Author
    Oladipo, Oluwatosin Gbemisola
    Ezeokoli, Obinna Tobechukwu
    Maboeta, Mark Steve
    Bezuidenhout, Cornelius Carlos
    Awotoye, Olusegun Olufemi
    Olayinka, Akin
    Metadata
    Show full item record
    Abstract
    Increased heavy metal pollution generated through anthropogenic activities into the environment has necessitated the need for eco-friendly remediation strategies such as mycoremediation. With a view to prospecting for fungi with heavy metal remediation potentials, the tolerance of five Aspergillus species isolated from soils of three active gold and gemstone mining sites in southwestern Nigeria to varied heavy metal concentrations was investigated. Isolated Aspergillus strains were identified based on the internal transcribed spacer 1 and 2 (ITS 1 and ITS 2) regions. Growth of Aspergillus strains were challenged with a range of varied concentrations of heavy metals: cadmium (Cd) (0–100), copper (Cu) (0–1000), lead (Pb) (0–400), arsenic (As) (0–500), and iron (Fe) (0–800) concentrations (ppm) incorporated into Malt Extract Agar (MEA) in triplicates. Mycelial radial growths were recorded at intervals of 3 days during a 13-day incubation period. Aspergillus strains were identified as A. tubingensis, A. fumigatus, A. terreus, A. nidulans, and A. nomius. A. tubingensis tolerated Cd, Cu, Pb, As, and Fe at all test concentrations (100–1000 ppm), showing no significant (p > .05) difference compared with the control. Similarly, A. nomius tolerated all concentrations of Cu, Pb, As, and Fe and only 50 ppm Cd concentrations. A. nidulans, A. terreus, and A. fumigatus, on the other hand, tolerated all concentrations of Cu, Pb, and Fe with no statistical significance (p > .05) difference from the controls. Overall, the Aspergillus species showed tolerance to heavy metal concentrations above permissible limits for contaminated soils globally. These heavy metal tolerance traits exhibited by the Aspergillus isolates may suggest that they are potential candidates for bioremediation of heavy metal–polluted environments
    URI
    http://hdl.handle.net/10394/23282
    http://dx.doi.org/10.1080/10889868.2016.1250722
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV