• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Health Sciences
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bioavailability of iron from fortified maize using stable isotope techniques

    Thumbnail
    View/Open
    white_zelda.pdf (1.283Mb)
    Date
    2007
    Author
    White, Zelda
    Metadata
    Show full item record
    Abstract
    Background: The high prevalence of iron deficiency and anaemia among South African children highlights the need for iron fortification, especially with a highly bioavailable iron compound. Fortification of staple foods is an adequate strategy to provide additional iron to populations at risk. In South Africa it is mandatory to fortify maize meal and wheat flour with iron, as well as other micronutrients. Elemental iron, specifically electrolytic iron, is currently the preferred choice but other compounds that might be more effective in alleviating iron deficiency are under consideration. Objectives: The objective of this study was to provide information about the bioavailability of ferrous fumarate and NaFeEDTA from maize meal porridge in young children, which would assist in selecting a bioavailable alternative to electrolytic iron in the South African National Food Fortification Programme, Methods: A randomized parallel study design was used, with each of the 2 groups further randomised to receive either one of two test regimens in a crossover design in which each child acted as his/her own control. Iron bioavailability was measured with a stable-isotope technique based on erythrocyte incorporation 15 days after intake. Results: The mean absorption of iron from NaFeEDTA and ferrous fumarate from the maize porridge meal was 11.5% and 9.29% respectively. NaFeEDTA and ferrous fumarate are both sufficiently bioavailable from a maize based meal rich in phytates. Conclusion: Both NaFeEDTA and ferrous fumarate would provide a physiologically important amount of iron should they replace electrolytic iron as fortificant in maize flour fortification. The final choice between ferrous fumarate and NaFeEDTA as when it comes to finding the alternative iron fortificant will depend on factors such as technical compatibility, bioavailability, relative cost and organoleptic characteristics.
    URI
    http://hdl.handle.net/10394/22
    Collections
    • Health Sciences [2073]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV