• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Natural and Agricultural Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laboratory-scale simulations with hydrated lime and organic polymer to evaluate the effect of pre-chlorination on motile Ceratium hirundinella cells during conventional water treatment

    Thumbnail
    View/Open
    Laboratory_scale_simulations.pdf (1.787Mb)
    Date
    2016
    Author
    Ewerts, H.
    Barnard, S.
    Swanepoel, A.
    Metadata
    Show full item record
    Abstract
    Algal genera such as Carteria, Chlamydomonas, Chlorogonium, Cryptomonas, Ceratium, Peridinium and Euglena are motile and may disrupt unit processes and cause water treatment problems. Algal species belonging to these motile algal genera are known to interfere with coagulation and flocculation unit processes which are the main processes for algal removal. These cells are well adapted, by means of their motile structures, morphological shapes and storage products, to remain in the supernatant (by swimming or floating) until it is carried over to sand filters, where cells may cause filter-clogging problems. When organic material is released from algal cells as a result of physical-chemical impacts on the cells, it may result in tasteand odour-related problems or the formation of harmful organic products such as trihalomethanes (THM). The aims of this study were to: (i) determine chlorine concentrations required to immobilise C. hirundinella cells; (ii) determine the removal efficiencies of pre-chlorination; (iii) investigate the integrity of C. hirundinella cells; and (iv) identify trihalomethanes that are formed. Source water samples enriched with C. hirundinella cells were exposed to a pre-determined chlorineconcentration range (0.05–0.45 mg/L). This study found that the half-maximal inhibitory concent ration (IC50-values) for chlorine < 0.20 mg/L is sufficient to render C. hirundinella cells immobile, while cells remain intact. Pre-chlorination did not have an impact on C. hirundinella removal when hydrated lime was used as a coagulant or coagulant aid. However, when organic polymer only was used as coagulant, removal efficiencies were improved by 20%. Chlorine by-products were measured, but posed no specific health risks to drinking water consumers due to the low concentration levels measured. Algal removal challenges that occur in water treatment plants when dosing organic polymers can be resolved by implementation of effective pre-chlorination strategies
    URI
    http://hdl.handle.net/10394/21821
    http://dx.doi.org/10.4314/wsa.v42i2.11
    https://www.ajol.info/index.php/wsa/article/view/134944
    Collections
    • Faculty of Natural and Agricultural Sciences [4855]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV