• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and biological evaluation of pentacycloundecylamines and triquinylamines as voltage-gated calcium channel blockers

    Thumbnail
    Date
    2016
    Author
    Young, Lois-May
    Domingo, Olwen C.
    Malan, Sarel F.
    Geldenhuys, Werner J.
    Van der Schyf, Cornelis J.
    Metadata
    Show full item record
    Abstract
    Preclinical studies for neurodegenerative diseases have shown a multi-targeted approach to be successful in the treatment of these complex disorders with several pathoetiological pathways. Polycyclic compounds, such as NGP1-01 (7a), have demonstrated the ability to target multiple mechanisms of the complex etiology and are referred to as multifunctional compounds. These compounds have served as scaffolds with the ability to attenuate Ca2+ overload and excitotoxicity through several pathways. In this study, our focus was on mitigating Ca2+ overload through the L-type calcium channels (LTCC). Here, we report the synthesis and biological evaluation of several novel polycyclic compounds. We determined the IC50 values for both the pentacycloundecylamines and the triquinylamines by means of a high-throughput fluorescence calcium flux assay utilizing Fura-2/AM. The potential of these compounds to offer protection against hydrogen peroxide-induced cell death was also evaluated. Overall, 8-benzylamino-8,11-oxapentacyclo[5.4.0.02,6.03,10.05,9]undecane (NGP1-01, 7a) had the most favorable pharmacological profile with an IC50 value of 86 µM for LTCC inhibition and significant reduction of hydrogen peroxide-induced cell death. In general, the triquinylamines were more active as LTCC blockers than the oxa-pentacycloundecylamines. The aza-pentacycloundecylamines were potent LTCC inhibitors, with 8-hydroxy-N-phenylethyl-8,11-azapentacyclo[5.4.0.02,6.03,10.05,9]undecane (8b) also able to offer significant protection in the cell viability assays
    URI
    http://hdl.handle.net/10394/21339
    http://dx.doi.org/10.1002/ardp.201500293
    http://onlinelibrary.wiley.com/doi/10.1002/ardp.201500293/full
    Collections
    • Faculty of Health Sciences [2404]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV