• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A mathematical model of recombinase polymerase amplification under continuously stirred conditions

    Thumbnail
    Date
    2016
    Author
    Moody, Clint
    Viljoen, Hendrik
    Newell, Heather
    Metadata
    Show full item record
    Abstract
    Growing interest surrounds isothermal PCR techniques which have great potential for miniaturization for mobile diagnostics. Particularly promising, Recombinase Polymerase Amplification (RPA), combines this advantage of isothermal PCR with simplicity and rapid amplification. A mathematical model is presented of Recombinase Polymerase Amplification (RPA) and compared to experimental data. This model identifies the rate limiting steps in the chemical process, the effects of stirring, and insights in to using RPA for quantitative measurement of initial DNA concentration. Experiments are shown in which DNA amplification occurs under conditions of Couette flow and conditions of rotational turbulent flow. Hand mixing has been shown to dramatically shorten amplification times but introduces unpredictable variability. In some cases, this variability manifests itself as human error induced false negatives, a serious problem for all potential applications. Mechanical stirring demonstrates similarly short delay times while retaining high repeatability and reduces the potential for human error
    URI
    http://hdl.handle.net/10394/21104
    https://doi.org/10.1016/j.bej.2016.04.017
    https://www.sciencedirect.com/science/article/pii/S1369703X16301152
    Collections
    • Faculty of Health Sciences [2404]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV