dc.contributor.author | Groenewald, G.J. | |
dc.contributor.author | Janse van Rensburg, D.B. | |
dc.contributor.author | Ran, A.C.M. | |
dc.date.accessioned | 2017-03-14T05:51:47Z | |
dc.date.available | 2017-03-14T05:51:47Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Groenewald, G.J. et al. 2016. A canonical form for H-unitary matrices. Operators and matrices, 10(4):739-783. [http://dx.doi.org/10.7153/oam-10-46] | en_US |
dc.identifier.issn | 1846-3886 | |
dc.identifier.issn | 1848-9974 (Online) | |
dc.identifier.uri | http://hdl.handle.net/10394/20804 | |
dc.identifier.uri | http://dx.doi.org/10.7153/oam-10-46 | |
dc.identifier.uri | http://oam.ele-math.com/10-46/A-canonical-form-for-H-unitary-matrices | |
dc.description.abstract | In this paper matrices
A
are considered that have the property that
A∗HA = H
,where
H
=
H∗
is invertible. A canonical form is given for the pair of matrices
(A,H)
under transformations
(A,H)
→
(
S−1AS,S∗HS), where
S
is invertible, in which the canonical form for the
A
-matrix is the usual Jordan canonical form. The real case is studied as well | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ele-Math | en_US |
dc.subject | Indefinite inner product space | en_US |
dc.subject | Canonical forms | en_US |
dc.subject | H -unitary matrices | en_US |
dc.title | A canonical form for H-unitary matrices | en_US |
dc.type | Article | en_US |
dc.contributor.researchID | 12066680 - Groenewald, Gilbert Joseph | |
dc.contributor.researchID | 10838368 - Janse van Rensburg, Dawid Benjamin | |
dc.contributor.researchID | 20000212 - Ran, Andreas Cornelis Maria | |