Show simple item record

dc.contributor.authorLubbe, Estelle
dc.contributor.authorUren, Kenneth R.
dc.contributor.authorWithey, Daniel
dc.date.accessioned2017-02-03T06:38:57Z
dc.date.available2017-02-03T06:38:57Z
dc.date.issued2015
dc.identifier.citationLubbe, E. et al. 2015. State estimation for a hexapod robot. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Congress Center, Hamburg, Sept 28 - Oct 2, 2015. Hamburg, Germany: 6286-6291. [http://ieeexplore.ieee.org/document/7354274/?reload=true]en_US
dc.identifier.isbn978-1-4799-9994-1 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/19962
dc.identifier.urihttp://dx.doi.org/10.1109/IROS.2015.7354274
dc.identifier.urihttp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7354274
dc.description.abstractThis paper introduces a state estimation methodology for a hexapod robot that makes use of proprioceptive sensors and a kinematic model of the robot. The methodology focuses on providing reliable full pose state estimation for a commercially-available hexapod robot platform with the use of only commonly-available sensors. The presented methodology provides the derivation of the kinematic model and implements an Extended Kalman Filter (EKF) state estimation framework similar to that recently validated on a quadruped. The EKF fuses the kinematic model with on-board IMU measurements to estimate the pose of the robot. The methodology was tested with experiments using a physical hexapod robot and validated with independent ground truth measurementsen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectRobot sensing systemsen_US
dc.subjectLegged locomotionen_US
dc.subjectRobot kinematicsen_US
dc.subjectKinematicsen_US
dc.subjectFooten_US
dc.titleState estimation for a hexapod roboten_US
dc.typePresentationen_US
dc.contributor.researchID12064203 - Uren, Kenneth Richard


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record