• Login
    View Item 
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    •   NWU-IR Home
    • Research Output
    • Faculty of Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles

    Thumbnail
    Date
    2016
    Author
    Bhardwaj, Ankur
    Grobler, Anne
    Mehta, Abhinav
    Mehta, Shuchi
    Yadav, Shailendra
    Metadata
    Show full item record
    Abstract
    The present study aimed to develop lipid–polymer hybrid nanoparticles (LPNs) for the combined pulmonary delivery of isoniazid (INH) and ciprofloxacin hydrochloride (CIP HCl). Drug-loaded LPNs were prepared by the double-emulsification solvent evaporation method using the three-factor three-level Box–Behnken design. The optimized formulation had a size of 111.81 ± 1.2 nm, PDI of 0.189 ± 1.4, and PDE of 63.64 ± 2.12% for INH-loaded LPN, and a size of 172.23 ± 2.31 nm, PDI of 0.169 ± 1.23, and PDE of 68.49 ± 2.54% for CIP HCl-loaded LPN. Drug release was found to be sustained and controlled at lower pH and followed the Peppas model. The in vitro uptake study in alveolar macrophage (AM) showed that uptake of the drugs was increased significantly if administered in the form of LPN. The stability study proved the applications of adding PLGA in LPN as the polymeric core, which leads to a much more stable product as compared to other novel drug delivery systems. Spray drying was done to produce an inhalable, dry, powdered form of drug-loaded LPN. The spray-dried (SD) powder was equally capable of producing nano-aggregates having morphology, density, flowability and reconstitutibility in the range ideal for inhaled drug delivery. The nano aggregates produced by spray drying manifested their aerosolization efficiency in terms of the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter. The in vivo study using pharmacokinetic and pharmacodynamic approaches revealed that maximum internalization efficiency was achieved by delivering LPN in SD powdered forms by pulmonary route
    URI
    http://hdl.handle.net/10394/19205
    https://www.tandfonline.com/doi/full/10.3109/21691401.2015.1062389
    https://doi.org/10.3109/21691401.2015.1062389
    Collections
    • Faculty of Health Sciences [2404]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV