Show simple item record

dc.contributor.authorEngelbrecht, N.E.
dc.contributor.authorBurger, R.A.
dc.date.accessioned2016-09-01T12:43:56Z
dc.date.available2016-09-01T12:43:56Z
dc.date.issued2015
dc.identifier.citationEngelbrecht, N.E. & Burger, R.A. 2015. A comparison of turbulence-reduced drift coefficients of importance for the modulation of galactic cosmic-ray protons in the supersonic solar wind. Advances in space research, 55(1):390-400. [http://www.journals.elsevier.com/advances-in-space-research/]en_US
dc.identifier.issn0273-1177
dc.identifier.issn1879-1948 (Online)
dc.identifier.urihttp://hdl.handle.net/10394/18497
dc.identifier.urihttps://doi.org/10.1016/j.asr.2014.09.019
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S0273117714005833
dc.description.abstractThe study of the modulation of cosmic rays in the heliosphere relies heavily on a thorough understanding of the transport of these charged particles in the turbulent solar wind. Drift effects due to gradients and the curvature of the background magnetic field have long been known to be reduced in the presence of turbulence, and as such, several forms for the drift coefficient that include the effect of turbulence have been proposed. The present study aims to investigate the qualitative effects of various turbulence-reduced drift coefficients on cosmic ray intensities computed using an ab initio 3D steady-state cosmic-ray modulation code. Results from a two-component turbulence transport models are used as inputs for the basic turbulence quantities. Furthermore, an expression for the perpendicular mean free path is derived here from a modification of the non-linear guiding center theory of Matthaeus et al. (2003) assuming a 2D turbulence power spectrum with a k-1k-1 energy range wavenumber dependence, and is used in conjunction with the various proposed turbulence-reduced drift coefficients. Cosmic-ray intensities computed using different drift coefficients but assuming the same turbulence conditions are found to differ widely. This study emphasises the need to gain a better understanding of the effect of turbulence on drifts in the heliosphereen_US
dc.description.sponsorshipNational Research Foundation (NRF), South Africaen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectCosmic-raysen_US
dc.subjectdiffusionen_US
dc.subjectturbulenceen_US
dc.titleA comparison of turbulence-reduced drift coefficients of importance for the modulation of galactic cosmic-ray protons in the supersonic solar winden_US
dc.typeArticleen_US
dc.contributor.researchID12580996 - Engelbrecht, Nicholas Eugene
dc.contributor.researchID10188738 - Burger, Renier Adriaan


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record